Spaces:
Sleeping
Sleeping
File size: 4,634 Bytes
f268d74 4258aad c3284a8 f268d74 ca4390d c3284a8 ca4390d f268d74 ca4390d 548d9f6 ca4390d f268d74 ca4390d f268d74 ca4390d b98abdc f268d74 ca4390d f268d74 b98abdc f268d74 ca4390d f268d74 ca4390d f268d74 c6793c5 f268d74 ca4390d f268d74 ca4390d 849e3ef ca4390d 79d8ea8 f268d74 79d8ea8 ca4390d 5b7803a ca4390d c3284a8 ca4390d 849e3ef b98abdc c3284a8 ca4390d 548d9f6 ca4390d 5b7803a b98abdc 5b7803a ca4390d 5b7803a 79d8ea8 849e3ef b98abdc c3284a8 ca4390d 548d9f6 ca4390d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
TMP_PATH = "/tmp"
os.environ["HF_HOME"] = os.path.join(TMP_PATH, "huggingface")
os.environ["TRANSFORMERS_CACHE"] = os.environ["HF_HOME"] + "/transformers"
os.environ["HF_DATASETS_CACHE"] = os.environ["HF_HOME"] + "/datasets"
os.environ["HF_METRICS_CACHE"] = os.environ["HF_HOME"] + "/metrics"
os.environ["MPLCONFIGDIR"] = os.path.join(TMP_PATH, "matplotlib")
os.environ["TORCH_HOME"] = os.path.join(TMP_PATH, "torch")
os.environ["XDG_CACHE_HOME"] = os.path.join(TMP_PATH, "xdg-cache")
os.environ["HOME"] = TMP_PATH
# Création des dossiers si nécessaires
for path in [
os.environ["HF_HOME"],
os.environ["MPLCONFIGDIR"],
os.environ["TORCH_HOME"],
os.environ["XDG_CACHE_HOME"],
TMP_PATH
]:
os.makedirs(path, exist_ok=True)
# --- Imports principaux ---
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, set_seed
from deep_translator import GoogleTranslator
from TTS.api import TTS
import whisper
import io
import torch
import scipy.io.wavfile
import numpy as np
import traceback
# --- Init FastAPI ---
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Config ---
device = "cuda" if torch.cuda.is_available() else "cpu"
TEMP_DIR = "/tmp"
os.makedirs(TEMP_DIR, exist_ok=True)
# --- Modèles chargés dynamiquement ---
loaded_tts_models = {}
loaded_tts_lingala = None
asr_model = None
# --- Utilitaires ---
def load_tts_model(lang: str):
if lang not in loaded_tts_models:
model_id = f"OlameMend/mms-tts-{lang}"
try:
loaded_tts_models[lang] = pipeline("text-to-audio", model=model_id)
except Exception as e:
raise RuntimeError(f"Erreur lors du chargement du modèle TTS '{model_id}': {e}")
return loaded_tts_models[lang]
def load_asr_model():
global asr_model
if asr_model is None:
asr_model = whisper.load_model("tiny")
return asr_model
def load_tts_lingala_model():
global loaded_tts_lingala
if loaded_tts_lingala is None:
loaded_tts_lingala = TTS("tts_models/lin/openbible/vits")
return loaded_tts_lingala
def preprocess_text_tts(text: str) -> str:
return text.strip()
def generate_tts_audio(lang: str, text: str) -> io.BytesIO:
lang = lang.lower()
synthesizer = load_tts_model(lang)
processed_text = preprocess_text_tts(text)
set_seed(555)
speech = synthesizer(processed_text)
wav_io = io.BytesIO()
scipy.io.wavfile.write(wav_io, rate=speech["sampling_rate"], data=speech["audio"][0])
wav_io.seek(0)
return wav_io
def speech_2_speech_ling(source_audio_path: str, lang: str) -> io.BytesIO:
asr = load_asr_model()
tts_lingala = load_tts_lingala_model()
result = asr.transcribe(source_audio_path, language=lang)
text = result["text"]
translated_text = GoogleTranslator(source="auto", target="ln").translate(text)
wav_io = io.BytesIO()
tts_lingala.tts_with_vc_to_file(text=translated_text, speaker_wav=source_audio_path, file_path=wav_io)
wav_io.seek(0)
return wav_io
# --- Endpoints ---
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/tts/")
async def api_tts(
lang: str = Form(...),
text: str = Form(None),
file: UploadFile = File(None)
):
try:
if file:
content = await file.read()
text = content.decode("utf-8")
if not text:
raise ValueError("Aucun texte fourni (champ texte ou fichier manquant).")
wav_io = generate_tts_audio(lang, text)
wav_io.seek(0)
return StreamingResponse(wav_io, media_type="audio/wav")
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Erreur TTS : {str(e)}")
@app.post("/speech-to-speech/")
async def api_s2st(
source_audio: UploadFile = File(...),
lang: str = Form(...)
):
try:
source_path = os.path.join(TEMP_DIR, "source_" + source_audio.filename)
with open(source_path, "wb") as f:
f.write(await source_audio.read())
wav_io = speech_2_speech_ling(source_path, lang)
wav_io.seek(0)
return StreamingResponse(wav_io, media_type="audio/wav")
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Erreur S2ST : {str(e)}")
|