Spaces:
Sleeping
Sleeping
File size: 36,883 Bytes
5b7d395 3dd27dd 5b7d395 99a78a1 5b7d395 fbe4d21 5b7d395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
"""
TTS Dataset Collection Tool with Custom Fonts and Enhanced Features
"""
import os
import json
import nltk
import gradio as gr
import uuid
from datetime import datetime
from pathlib import Path
import logging
from typing import Dict, Tuple, Optional
import traceback
import soundfile as sf
import re
# Download required NLTK data during initialization
try:
nltk.download('punkt') # Download punkt tokenizer data
nltk.data.find('tokenizers/punkt')
except Exception as e:
logger.warning(f"Error downloading NLTK data: {str(e)}")
logger.warning("NLTK tokenization might not work properly")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Font configurations
FONT_STYLES = {
"english_serif": {
"name": "Times New Roman",
"family": "Times New Roman",
"css": "font-family: 'Times New Roman', serif;"
},
"english_sans": {
"name": "Arial",
"family": "Arial",
"css": "font-family: Arial, sans-serif;"
},
"nastaliq": {
"name": "Nastaliq",
"family": "Noto Nastaliq Urdu",
"css": "font-family: 'Noto Nastaliq Urdu', serif;"
},
"naskh": {
"name": "Naskh",
"family": "Scheherazade New",
"css": "font-family: 'Scheherazade New', serif;"
}
}
class TTSDatasetCollector:
"""Manages TTS dataset collection and organization with enhanced features"""
def __init__(self):
"""Initialize the TTS Dataset Collector"""
# Handle both script and notebook environments for root path
try:
# When running as a script
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
except NameError:
# When running in Jupyter/IPython
self.root_path = Path.cwd() / "dataset"
self.fonts_path = self.root_path / "fonts"
self.sentences = []
self.current_index = 0
self.current_font = "english_serif"
self.custom_fonts = {}
self.recordings = {} # Store recordings by sentence index
self.setup_directories()
# Ensure NLTK data is downloaded
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt', quiet=True)
logger.info("TTS Dataset Collector initialized")
def setup_directories(self) -> None:
"""Create necessary directory structure with logging"""
try:
# Create main dataset directory
self.root_path.mkdir(parents=True, exist_ok=True)
# Create subdirectories
for subdir in ['audio', 'transcriptions', 'metadata', 'fonts']:
(self.root_path / subdir).mkdir(parents=True, exist_ok=True)
# Initialize log file
log_file = self.root_path / 'dataset_log.txt'
if not log_file.exists():
with open(log_file, 'w', encoding='utf-8') as f:
f.write(f"Dataset collection initialized on {datetime.now().isoformat()}\n")
logger.info("Directory structure created successfully")
except Exception as e:
logger.error(f"Failed to create directory structure: {str(e)}")
logger.error(traceback.format_exc())
raise RuntimeError("Failed to initialize directory structure")
def log_operation(self, message: str, level: str = "info") -> None:
"""Log operations with timestamp and level"""
try:
log_file = self.root_path / 'dataset_log.txt'
timestamp = datetime.now().isoformat()
with open(log_file, 'a', encoding='utf-8') as f:
f.write(f"[{timestamp}] [{level.upper()}] {message}\n")
if level.lower() == "error":
logger.error(message)
else:
logger.info(message)
except Exception as e:
logger.error(f"Failed to log operation: {str(e)}")
def process_text(self, text: str) -> Tuple[bool, str]:
"""Process pasted or loaded text with error handling"""
try:
if not text.strip():
return False, "Text is empty"
# Simple sentence splitting as fallback
def simple_split_sentences(text):
# Split on common sentence endings
sentences = []
current = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
# Split on common sentence endings
parts = re.split(r'[.!?]', line)
for part in parts:
part = part.strip()
if part:
current.append(part)
sentences.append(' '.join(current))
current = []
if current:
sentences.append(' '.join(current))
return [s.strip() for s in sentences if s.strip()]
try:
# Try NLTK first
self.sentences = nltk.sent_tokenize(text.strip())
except Exception as e:
logger.warning(f"NLTK tokenization failed, falling back to simple splitting: {str(e)}")
# Fallback to simple splitting
self.sentences = simple_split_sentences(text.strip())
if not self.sentences:
return False, "No valid sentences found in text"
self.current_index = 0
# Log success
self.log_operation(f"Processed text with {len(self.sentences)} sentences")
return True, f"Successfully loaded {len(self.sentences)} sentences"
except Exception as e:
error_msg = f"Error processing text: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def load_text_file(self, file) -> Tuple[bool, str]:
"""Process and load text file with enhanced error handling"""
if not file:
return False, "No file provided"
try:
# Validate file extension
if not file.name.endswith('.txt'):
return False, "Only .txt files are supported"
text = file.read().decode('utf-8')
return self.process_text(text)
except UnicodeDecodeError:
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
self.log_operation(error_msg, "error")
return False, error_msg
except Exception as e:
error_msg = f"Error loading file: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def get_styled_text(self, text: str) -> str:
"""Get text with current font styling"""
font_css = FONT_STYLES.get(self.current_font, {}).get('css', '')
return f"<div style='{font_css}'>{text}</div>"
def set_font(self, font_style: str) -> Tuple[bool, str]:
"""Set the current font style"""
if font_style not in FONT_STYLES and font_style not in self.custom_fonts:
available_fonts = ', '.join(list(FONT_STYLES.keys()) + list(self.custom_fonts.keys()))
return False, f"Invalid font style. Available styles: {available_fonts}"
self.current_font = font_style
return True, f"Font style set to {font_style}"
def add_custom_font(self, font_file_path) -> Tuple[bool, str]:
"""Add a custom font from the uploaded TTF file"""
try:
if not font_file_path:
return False, "No font file provided"
if not font_file_path.endswith('.ttf'):
return False, "Only .ttf font files are supported"
# Generate a unique font family name
font_family = f"font_{uuid.uuid4().hex[:8]}"
font_filename = font_family + '.ttf'
font_dest = self.fonts_path / font_filename
# Read and save the font file
with open(font_file_path, 'rb') as f_src, open(font_dest, 'wb') as f_dest:
f_dest.write(f_src.read())
# Add to custom fonts
self.custom_fonts[font_family] = {
'name': os.path.basename(font_file_path),
'family': font_family,
'css': f"font-family: '{font_family}', serif;"
}
# Update the FONT_STYLES with the custom font
FONT_STYLES[font_family] = self.custom_fonts[font_family]
# Log success
self.log_operation(f"Added custom font: {font_file_path} as {font_family}")
return True, f"Custom font '{os.path.basename(font_file_path)}' added successfully"
except Exception as e:
error_msg = f"Error adding custom font: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def generate_filenames(self, dataset_name: str, speaker_id: str, sentence_text: str) -> Tuple[str, str]:
"""Generate unique filenames for audio and text files"""
line_number = self.current_index + 1
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
# Sanitize strings for filenames
def sanitize_filename(s):
return re.sub(r'[^a-zA-Z0-9_-]', '_', s)[:50]
dataset_name_safe = sanitize_filename(dataset_name)
speaker_id_safe = sanitize_filename(speaker_id)
sentence_excerpt = sanitize_filename(sentence_text[:20])
base_name = f"{dataset_name_safe}_{speaker_id_safe}_line{line_number}_{sentence_excerpt}_{timestamp}"
return f"{base_name}.wav", f"{base_name}.txt"
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str, Dict]:
"""Save recording with enhanced error handling and logging"""
if not all([audio_file, speaker_id, dataset_name]):
missing = []
if not audio_file:
missing.append("audio recording")
if not speaker_id:
missing.append("speaker ID")
if not dataset_name:
missing.append("dataset name")
return False, f"Missing required information: {', '.join(missing)}", {}
# Check if sentences have been loaded
if not self.sentences:
return False, "No sentences have been loaded. Please load text before saving recordings.", {}
if self.current_index >= len(self.sentences):
return False, "Current sentence index is out of range.", {}
try:
# Validate inputs
if not speaker_id.strip().isalnum():
return False, "Speaker ID must contain only letters and numbers", {}
if not dataset_name.strip().isalnum():
return False, "Dataset name must contain only letters and numbers", {}
# Get current sentence text
sentence_text = self.sentences[self.current_index]
# Generate filenames
audio_name, text_name = self.generate_filenames(dataset_name, speaker_id, sentence_text)
# Create speaker directories
audio_dir = self.root_path / 'audio' / speaker_id
text_dir = self.root_path / 'transcriptions' / speaker_id
audio_dir.mkdir(parents=True, exist_ok=True)
text_dir.mkdir(parents=True, exist_ok=True)
# Save audio file
audio_path = audio_dir / audio_name
# Read the audio file using soundfile
audio_data, sampling_rate = sf.read(audio_file)
# Save audio file
sf.write(str(audio_path), audio_data, sampling_rate)
# Save transcription
text_path = text_dir / text_name
self.save_transcription(
text_path,
sentence_text,
{
'speaker_id': speaker_id,
'dataset_name': dataset_name,
'timestamp': datetime.now().isoformat(),
'audio_file': audio_name,
'font_style': self.current_font
}
)
# Update metadata
self.update_metadata(speaker_id, dataset_name)
# Store the recording
self.recordings[self.current_index] = {
'audio_file': audio_file,
'speaker_id': speaker_id,
'dataset_name': dataset_name,
'sentence': self.sentences[self.current_index]
}
# Log success
self.log_operation(
f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
f"Audio={audio_name}, Text={text_name}"
)
return True, f"Recording saved successfully as {audio_name}", self.recordings
except Exception as e:
error_msg = f"Error saving recording: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg, self.recordings
def save_transcription(self, file_path: Path, text: str, metadata: Dict) -> None:
"""Save transcription with metadata"""
content = f"""[METADATA]
Recording_ID: {metadata['audio_file']}
Speaker_ID: {metadata['speaker_id']}
Dataset_Name: {metadata['dataset_name']}
Timestamp: {metadata['timestamp']}
Font_Style: {metadata['font_style']}
[TEXT]
{text}
"""
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
def update_metadata(self, speaker_id: str, dataset_name: str) -> None:
"""Update dataset metadata with error handling"""
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
try:
if metadata_file.exists():
with open(metadata_file, 'r') as f:
metadata = json.load(f)
else:
metadata = {'speakers': {}, 'last_updated': None}
# Update speaker data
if speaker_id not in metadata['speakers']:
metadata['speakers'][speaker_id] = {
'total_recordings': 0,
'datasets': {}
}
if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
'recordings': 0,
'sentences': len(self.sentences),
'recorded_sentences': [],
'first_recording': datetime.now().isoformat(),
'last_recording': None,
'font_styles_used': []
}
# Update counts and timestamps
metadata['speakers'][speaker_id]['total_recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
datetime.now().isoformat()
# Add current index to recorded sentences
if self.current_index not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences']:
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences'].append(self.current_index)
# Update font styles
if self.current_font not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used']:
metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used'].append(
self.current_font
)
metadata['last_updated'] = datetime.now().isoformat()
# Save updated metadata
with open(metadata_file, 'w') as f:
json.dump(metadata, f, indent=2)
self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")
except Exception as e:
error_msg = f"Error updating metadata: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
def get_navigation_info(self) -> Dict[str, Optional[str]]:
"""Get current and next sentence information"""
if not self.sentences:
return {
'current': None,
'next': None,
'progress': "No text loaded"
}
current = self.get_styled_text(self.sentences[self.current_index])
next_text = None
if self.current_index < len(self.sentences) - 1:
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
return {
'current': current,
'next': next_text,
'progress': progress
}
def navigate(self, direction: str) -> Dict[str, Optional[str]]:
"""Navigate through sentences"""
if not self.sentences:
return {
'current': None,
'next': None,
'progress': "No text loaded",
'status': "⚠️ Please load a text file first"
}
if direction == "next" and self.current_index < len(self.sentences) - 1:
self.current_index += 1
elif direction == "prev" and self.current_index > 0:
self.current_index -= 1
nav_info = self.get_navigation_info()
nav_info['status'] = "✅ Navigation successful"
return nav_info
def get_dataset_statistics(self) -> Dict:
"""Get current dataset statistics"""
try:
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
if not metadata_file.exists():
return {}
with open(metadata_file, 'r') as f:
metadata = json.load(f)
# Flatten statistics for display
total_sentences = len(self.sentences)
recorded = sum(len(dataset.get('recorded_sentences', [])) for speaker in metadata['speakers'].values() for dataset in speaker['datasets'].values())
remaining = total_sentences - recorded
stats = {
"Total Sentences": total_sentences,
"Recorded Sentences": recorded,
"Remaining Sentences": remaining,
"Last Updated": metadata.get('last_updated', 'N/A')
}
return stats
except Exception as e:
logger.error(f"Error reading dataset statistics: {str(e)}")
return {}
def get_last_audio_path(self, speaker_id: str) -> Optional[str]:
"""Get the path to the last saved audio file for downloading"""
audio_dir = self.root_path / 'audio' / speaker_id
audio_files = sorted(audio_dir.glob('*.wav'), key=lambda f: f.stat().st_mtime, reverse=True)
if audio_files:
return str(audio_files[0])
else:
return None
def get_last_transcript_path(self, speaker_id: str) -> Optional[str]:
"""Get the path to the last saved transcription file for downloading"""
text_dir = self.root_path / 'transcriptions' / speaker_id
text_files = sorted(text_dir.glob('*.txt'), key=lambda f: f.stat().st_mtime, reverse=True)
if text_files:
return str(text_files[0])
else:
return None
def create_zip_archive(self, speaker_id: str) -> Optional[str]:
"""Create a ZIP archive of all recordings and transcriptions for a speaker"""
try:
from zipfile import ZipFile
import tempfile
# Create temporary zip file
temp_dir = Path(tempfile.gettempdir())
zip_path = temp_dir / f"{speaker_id}_recordings.zip"
with ZipFile(zip_path, 'w') as zipf:
# Add audio files
audio_dir = self.root_path / 'audio' / speaker_id
if audio_dir.exists():
for audio_file in audio_dir.glob('*.wav'):
zipf.write(audio_file, f"audio/{audio_file.name}")
# Add transcription files
text_dir = self.root_path / 'transcriptions' / speaker_id
if text_dir.exists():
for text_file in text_dir.glob('*.txt'):
zipf.write(text_file, f"transcriptions/{text_file.name}")
return str(zip_path)
except Exception as e:
logger.error(f"Error creating zip archive: {str(e)}")
return None
def create_interface():
"""Create Gradio interface with enhanced features"""
collector = TTSDatasetCollector()
# Create custom CSS for fonts
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.record-button {
font-size: 1em !important;
padding: 10px !important;
}
.sentence-display {
font-size: 1.4em !important;
padding: 15px !important;
border: 1px solid #ddd !important;
border-radius: 8px !important;
margin: 10px 0 !important;
min-height: 100px !important;
}
.small-input {
max-width: 300px !important;
}
"""
# Include Google Fonts for Nastaliq and Naskh
google_fonts_css = """
@import url('https://fonts.googleapis.com/earlyaccess/notonastaliqurdu.css');
@import url('https://fonts.googleapis.com/css2?family=Scheherazade+New&display=swap');
"""
custom_css = google_fonts_css + custom_css
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
gr.Markdown("# TTS Dataset Collection Tool")
status = gr.Textbox(
label="Status",
interactive=False,
max_lines=3,
elem_classes=["small-input"]
)
with gr.Row():
# Left column - Configuration and Input
with gr.Column(scale=1):
text_input = gr.Textbox(
label="Paste Text",
placeholder="Paste your text here...",
lines=5,
elem_classes=["small-input"],
interactive=True
)
file_input = gr.File(
label="Or Upload Text File (.txt)",
file_types=[".txt"],
elem_classes=["small-input"]
)
speaker_id = gr.Textbox(
label="Speaker ID",
placeholder="Enter unique speaker identifier (letters and numbers only)",
elem_classes=["small-input"]
)
dataset_name = gr.Textbox(
label="Dataset Name",
placeholder="Enter dataset name (letters and numbers only)",
elem_classes=["small-input"]
)
font_select = gr.Dropdown(
choices=list(FONT_STYLES.keys()),
value="english_serif",
label="Select Font Style",
elem_classes=["small-input"]
)
# Custom font upload
with gr.Accordion("Custom Font Upload", open=False):
font_file_input = gr.File(
label="Upload Custom Font (.ttf)",
file_types=[".ttf"],
elem_classes=["small-input"],
type="filepath"
)
add_font_btn = gr.Button("Add Custom Font")
# Dataset Info
with gr.Accordion("Dataset Statistics", open=False):
dataset_info = gr.JSON(
label="",
value={}
)
# Right column - Recording
with gr.Column(scale=2):
current_text = gr.HTML(
label="Current Sentence",
elem_classes=["sentence-display"]
)
next_text = gr.HTML(
label="Next Sentence",
elem_classes=["sentence-display"]
)
progress = gr.HTML("")
with gr.Row():
audio_recorder = gr.Audio(
label="Record Audio",
type="filepath",
elem_classes=["record-button"],
interactive=True,
streaming=False # Disable streaming to prevent freezing
)
clear_btn = gr.Button("Clear Recording", variant="secondary")
# Controls
with gr.Row():
prev_btn = gr.Button("Previous", variant="secondary")
save_btn = gr.Button("Save Recording", variant="primary")
next_btn = gr.Button("Next", variant="primary")
# Download Links
with gr.Row():
download_audio = gr.File(label="Download Last Audio", interactive=False)
download_transcript = gr.File(label="Download Last Transcript", interactive=False)
download_all = gr.File(label="Download All Recordings", interactive=False)
def download_all_recordings(speaker_id_value):
"""Handle downloading all recordings for a speaker"""
if not speaker_id_value:
return {
status: "⚠️ Please enter a Speaker ID first",
download_all: None
}
zip_path = collector.create_zip_archive(speaker_id_value)
if zip_path:
return {
status: "✅ Archive created successfully",
download_all: zip_path
}
return {
status: "❌ Failed to create archive",
download_all: None
}
# Add download all button and its event handler
download_all_btn = gr.Button("Download All Recordings", variant="secondary")
download_all_btn.click(
download_all_recordings,
inputs=[speaker_id],
outputs=[status, download_all]
)
# Add recordings display
with gr.Column(scale=2):
recordings_display = gr.HTML(
label="Saved Recordings",
value="<div id='recordings-list'></div>"
)
def process_pasted_text(text):
"""Handle pasted text input"""
if not text:
return {
current_text: "",
next_text: "",
progress: "",
status: "⚠️ No text provided",
dataset_info: collector.get_dataset_statistics()
}
success, msg = collector.process_text(text)
if not success:
return {
current_text: "",
next_text: "",
progress: "",
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics()
}
nav_info = collector.get_navigation_info()
progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics()
}
def update_font(font_style):
"""Update font and refresh display"""
success, msg = collector.set_font(font_style)
if not success:
return {status: msg}
nav_info = collector.get_navigation_info()
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
status: f"Font updated to {font_style}"
}
def load_file(file):
"""Handle file loading with enhanced error reporting"""
if not file:
return {
current_text: "",
next_text: "",
progress: "",
status: "⚠️ No file selected",
dataset_info: collector.get_dataset_statistics()
}
success, msg = collector.load_text_file(file)
if not success:
return {
current_text: "",
next_text: "",
progress: "",
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics()
}
nav_info = collector.get_navigation_info()
progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics()
}
def save_current_recording(audio_file, speaker_id_value, dataset_name_value):
"""Handle saving the current recording"""
if not audio_file:
return {
status: "⚠️ Please record audio first",
download_audio: None,
download_transcript: None,
download_all: None,
recordings_display: "<div id='recordings-list'>No recordings yet</div>",
audio_recorder: None # Clear the recorder
}
success, msg, recordings = collector.save_recording(
audio_file, speaker_id_value, dataset_name_value
)
if not success:
return {
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics(),
download_audio: None,
download_transcript: None,
download_all: None,
recordings_display: "<div id='recordings-list'>No recordings yet</div>"
}
# Get paths to the saved files
audio_path = collector.get_last_audio_path(speaker_id_value)
transcript_path = collector.get_last_transcript_path(speaker_id_value)
zip_path = collector.create_zip_archive(speaker_id_value)
# Auto-advance to next sentence after successful save
nav_info = collector.navigate("next")
progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
# Update recordings display
recordings_html = create_recordings_display(recordings)
result = {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics(),
download_audio: audio_path,
download_transcript: transcript_path,
download_all: zip_path,
recordings_display: recordings_html,
audio_recorder: None # Clear the recorder after successful save
}
return result
def create_recordings_display(recordings):
"""Create HTML display for recordings"""
recordings_html = "<div id='recordings-list'><h3>Saved Recordings:</h3>"
for idx, rec in recordings.items():
recordings_html += f"""
<div style='margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px;'>
<p><strong>Sentence {idx + 1}:</strong> {rec['sentence']}</p>
<audio controls src='{rec['audio_file']}'></audio>
</div>
"""
recordings_html += "</div>"
return recordings_html
def navigate_sentences(direction):
"""Handle navigation between sentences"""
nav_info = collector.navigate(direction)
progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: nav_info['status']
}
def add_custom_font(font_file_path):
"""Handle adding a custom font"""
if not font_file_path:
return {
font_select: gr.update(),
status: "⚠️ No font file selected"
}
success, msg = collector.add_custom_font(font_file_path)
if not success:
return {
font_select: gr.update(),
status: f"❌ {msg}"
}
# Update font dropdown
font_choices = list(FONT_STYLES.keys()) + list(collector.custom_fonts.keys())
# Return updates to font_select and status
return {
font_select: gr.update(choices=font_choices),
status: f"✅ {msg}"
}
def clear_recording():
"""Clear the current recording"""
return {
audio_recorder: None,
status: "Recording cleared"
}
# Add clear button handler
clear_btn.click(
clear_recording,
outputs=[audio_recorder, status]
)
# Event handlers
text_input.change(
process_pasted_text,
inputs=[text_input],
outputs=[current_text, next_text, progress, status, dataset_info]
)
file_input.upload(
load_file,
inputs=[file_input],
outputs=[current_text, next_text, progress, status, dataset_info]
)
font_select.change(
update_font,
inputs=[font_select],
outputs=[current_text, next_text, status]
)
add_font_btn.click(
add_custom_font,
inputs=[font_file_input],
outputs=[font_select, status]
)
save_btn.click(
save_current_recording,
inputs=[audio_recorder, speaker_id, dataset_name],
outputs=[current_text, next_text, progress, status, dataset_info,
download_audio, download_transcript, download_all, recordings_display,
audio_recorder] # Add audio_recorder to outputs
)
prev_btn.click(
lambda: navigate_sentences("prev"),
outputs=[current_text, next_text, progress, status]
)
next_btn.click(
lambda: navigate_sentences("next"),
outputs=[current_text, next_text, progress, status]
)
# Initialize dataset info
dataset_info.value = collector.get_dataset_statistics()
return interface
if __name__ == "__main__":
try:
# Set up any required environment variables
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
# Create and launch the interface
interface = create_interface()
interface.queue() # Enable queuing for better handling of concurrent users
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
show_error=True
)
except Exception as e:
logger.error(f"Failed to launch interface: {str(e)}")
logger.error(traceback.format_exc())
raise |