File size: 36,883 Bytes
5b7d395
 
 
 
 
 
3dd27dd
5b7d395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a78a1
5b7d395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbe4d21
5b7d395
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
"""
TTS Dataset Collection Tool with Custom Fonts and Enhanced Features
"""
import os
import json
import nltk
import gradio as gr
import uuid
from datetime import datetime
from pathlib import Path
import logging
from typing import Dict, Tuple, Optional
import traceback
import soundfile as sf
import re

# Download required NLTK data during initialization
try:
    nltk.download('punkt')  # Download punkt tokenizer data
    nltk.data.find('tokenizers/punkt')
except Exception as e:
    logger.warning(f"Error downloading NLTK data: {str(e)}")
    logger.warning("NLTK tokenization might not work properly")

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Font configurations
FONT_STYLES = {
    "english_serif": {
        "name": "Times New Roman",
        "family": "Times New Roman",
        "css": "font-family: 'Times New Roman', serif;"
    },
    "english_sans": {
        "name": "Arial",
        "family": "Arial",
        "css": "font-family: Arial, sans-serif;"
    },
    "nastaliq": {
        "name": "Nastaliq",
        "family": "Noto Nastaliq Urdu",
        "css": "font-family: 'Noto Nastaliq Urdu', serif;"
    },
    "naskh": {
        "name": "Naskh",
        "family": "Scheherazade New",
        "css": "font-family: 'Scheherazade New', serif;"
    }
}


class TTSDatasetCollector:
    """Manages TTS dataset collection and organization with enhanced features"""

    def __init__(self):
        """Initialize the TTS Dataset Collector"""
        # Handle both script and notebook environments for root path
        try:
            # When running as a script
            self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
        except NameError:
            # When running in Jupyter/IPython
            self.root_path = Path.cwd() / "dataset"

        self.fonts_path = self.root_path / "fonts"
        self.sentences = []
        self.current_index = 0
        self.current_font = "english_serif"
        self.custom_fonts = {}
        self.recordings = {}  # Store recordings by sentence index
        self.setup_directories()

        # Ensure NLTK data is downloaded
        try:
            nltk.data.find('tokenizers/punkt')
        except LookupError:
            nltk.download('punkt', quiet=True)

        logger.info("TTS Dataset Collector initialized")

    def setup_directories(self) -> None:
        """Create necessary directory structure with logging"""
        try:
            # Create main dataset directory
            self.root_path.mkdir(parents=True, exist_ok=True)

            # Create subdirectories
            for subdir in ['audio', 'transcriptions', 'metadata', 'fonts']:
                (self.root_path / subdir).mkdir(parents=True, exist_ok=True)

            # Initialize log file
            log_file = self.root_path / 'dataset_log.txt'
            if not log_file.exists():
                with open(log_file, 'w', encoding='utf-8') as f:
                    f.write(f"Dataset collection initialized on {datetime.now().isoformat()}\n")

            logger.info("Directory structure created successfully")

        except Exception as e:
            logger.error(f"Failed to create directory structure: {str(e)}")
            logger.error(traceback.format_exc())
            raise RuntimeError("Failed to initialize directory structure")

    def log_operation(self, message: str, level: str = "info") -> None:
        """Log operations with timestamp and level"""
        try:
            log_file = self.root_path / 'dataset_log.txt'
            timestamp = datetime.now().isoformat()

            with open(log_file, 'a', encoding='utf-8') as f:
                f.write(f"[{timestamp}] [{level.upper()}] {message}\n")

            if level.lower() == "error":
                logger.error(message)
            else:
                logger.info(message)

        except Exception as e:
            logger.error(f"Failed to log operation: {str(e)}")

    def process_text(self, text: str) -> Tuple[bool, str]:
        """Process pasted or loaded text with error handling"""
        try:
            if not text.strip():
                return False, "Text is empty"

            # Simple sentence splitting as fallback
            def simple_split_sentences(text):
                # Split on common sentence endings
                sentences = []
                current = []

                for line in text.split('\n'):
                    line = line.strip()
                    if not line:
                        continue

                    # Split on common sentence endings
                    parts = re.split(r'[.!?]', line)
                    for part in parts:
                        part = part.strip()
                        if part:
                            current.append(part)
                            sentences.append(' '.join(current))
                            current = []

                if current:
                    sentences.append(' '.join(current))

                return [s.strip() for s in sentences if s.strip()]

            try:
                # Try NLTK first
                self.sentences = nltk.sent_tokenize(text.strip())
            except Exception as e:
                logger.warning(f"NLTK tokenization failed, falling back to simple splitting: {str(e)}")
                # Fallback to simple splitting
                self.sentences = simple_split_sentences(text.strip())

            if not self.sentences:
                return False, "No valid sentences found in text"

            self.current_index = 0

            # Log success
            self.log_operation(f"Processed text with {len(self.sentences)} sentences")
            return True, f"Successfully loaded {len(self.sentences)} sentences"

        except Exception as e:
            error_msg = f"Error processing text: {str(e)}"
            self.log_operation(error_msg, "error")
            logger.error(traceback.format_exc())
            return False, error_msg

    def load_text_file(self, file) -> Tuple[bool, str]:
        """Process and load text file with enhanced error handling"""
        if not file:
            return False, "No file provided"

        try:
            # Validate file extension
            if not file.name.endswith('.txt'):
                return False, "Only .txt files are supported"

            text = file.read().decode('utf-8')

            return self.process_text(text)

        except UnicodeDecodeError:
            error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
            self.log_operation(error_msg, "error")
            return False, error_msg
        except Exception as e:
            error_msg = f"Error loading file: {str(e)}"
            self.log_operation(error_msg, "error")
            logger.error(traceback.format_exc())
            return False, error_msg

    def get_styled_text(self, text: str) -> str:
        """Get text with current font styling"""
        font_css = FONT_STYLES.get(self.current_font, {}).get('css', '')
        return f"<div style='{font_css}'>{text}</div>"

    def set_font(self, font_style: str) -> Tuple[bool, str]:
        """Set the current font style"""
        if font_style not in FONT_STYLES and font_style not in self.custom_fonts:
            available_fonts = ', '.join(list(FONT_STYLES.keys()) + list(self.custom_fonts.keys()))
            return False, f"Invalid font style. Available styles: {available_fonts}"
        self.current_font = font_style
        return True, f"Font style set to {font_style}"

    def add_custom_font(self, font_file_path) -> Tuple[bool, str]:
        """Add a custom font from the uploaded TTF file"""
        try:
            if not font_file_path:
                return False, "No font file provided"

            if not font_file_path.endswith('.ttf'):
                return False, "Only .ttf font files are supported"

            # Generate a unique font family name
            font_family = f"font_{uuid.uuid4().hex[:8]}"
            font_filename = font_family + '.ttf'
            font_dest = self.fonts_path / font_filename

            # Read and save the font file
            with open(font_file_path, 'rb') as f_src, open(font_dest, 'wb') as f_dest:
                f_dest.write(f_src.read())

            # Add to custom fonts
            self.custom_fonts[font_family] = {
                'name': os.path.basename(font_file_path),
                'family': font_family,
                'css': f"font-family: '{font_family}', serif;"
            }

            # Update the FONT_STYLES with the custom font
            FONT_STYLES[font_family] = self.custom_fonts[font_family]

            # Log success
            self.log_operation(f"Added custom font: {font_file_path} as {font_family}")
            return True, f"Custom font '{os.path.basename(font_file_path)}' added successfully"

        except Exception as e:
            error_msg = f"Error adding custom font: {str(e)}"
            self.log_operation(error_msg, "error")
            logger.error(traceback.format_exc())
            return False, error_msg

    def generate_filenames(self, dataset_name: str, speaker_id: str, sentence_text: str) -> Tuple[str, str]:
        """Generate unique filenames for audio and text files"""
        line_number = self.current_index + 1
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")

        # Sanitize strings for filenames
        def sanitize_filename(s):
            return re.sub(r'[^a-zA-Z0-9_-]', '_', s)[:50]

        dataset_name_safe = sanitize_filename(dataset_name)
        speaker_id_safe = sanitize_filename(speaker_id)
        sentence_excerpt = sanitize_filename(sentence_text[:20])
        base_name = f"{dataset_name_safe}_{speaker_id_safe}_line{line_number}_{sentence_excerpt}_{timestamp}"
        return f"{base_name}.wav", f"{base_name}.txt"

    def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str, Dict]:
        """Save recording with enhanced error handling and logging"""
        if not all([audio_file, speaker_id, dataset_name]):
            missing = []
            if not audio_file:
                missing.append("audio recording")
            if not speaker_id:
                missing.append("speaker ID")
            if not dataset_name:
                missing.append("dataset name")
            return False, f"Missing required information: {', '.join(missing)}", {}

        # Check if sentences have been loaded
        if not self.sentences:
            return False, "No sentences have been loaded. Please load text before saving recordings.", {}
        if self.current_index >= len(self.sentences):
            return False, "Current sentence index is out of range.", {}

        try:
            # Validate inputs
            if not speaker_id.strip().isalnum():
                return False, "Speaker ID must contain only letters and numbers", {}
            if not dataset_name.strip().isalnum():
                return False, "Dataset name must contain only letters and numbers", {}

            # Get current sentence text
            sentence_text = self.sentences[self.current_index]

            # Generate filenames
            audio_name, text_name = self.generate_filenames(dataset_name, speaker_id, sentence_text)

            # Create speaker directories
            audio_dir = self.root_path / 'audio' / speaker_id
            text_dir = self.root_path / 'transcriptions' / speaker_id
            audio_dir.mkdir(parents=True, exist_ok=True)
            text_dir.mkdir(parents=True, exist_ok=True)

            # Save audio file
            audio_path = audio_dir / audio_name

            # Read the audio file using soundfile
            audio_data, sampling_rate = sf.read(audio_file)

            # Save audio file
            sf.write(str(audio_path), audio_data, sampling_rate)

            # Save transcription
            text_path = text_dir / text_name
            self.save_transcription(
                text_path,
                sentence_text,
                {
                    'speaker_id': speaker_id,
                    'dataset_name': dataset_name,
                    'timestamp': datetime.now().isoformat(),
                    'audio_file': audio_name,
                    'font_style': self.current_font
                }
            )

            # Update metadata
            self.update_metadata(speaker_id, dataset_name)

            # Store the recording
            self.recordings[self.current_index] = {
                'audio_file': audio_file,
                'speaker_id': speaker_id,
                'dataset_name': dataset_name,
                'sentence': self.sentences[self.current_index]
            }

            # Log success
            self.log_operation(
                f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
                f"Audio={audio_name}, Text={text_name}"
            )

            return True, f"Recording saved successfully as {audio_name}", self.recordings

        except Exception as e:
            error_msg = f"Error saving recording: {str(e)}"
            self.log_operation(error_msg, "error")
            logger.error(traceback.format_exc())
            return False, error_msg, self.recordings

    def save_transcription(self, file_path: Path, text: str, metadata: Dict) -> None:
        """Save transcription with metadata"""
        content = f"""[METADATA]
Recording_ID: {metadata['audio_file']}
Speaker_ID: {metadata['speaker_id']}
Dataset_Name: {metadata['dataset_name']}
Timestamp: {metadata['timestamp']}
Font_Style: {metadata['font_style']}
[TEXT]
{text}
"""
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(content)

    def update_metadata(self, speaker_id: str, dataset_name: str) -> None:
        """Update dataset metadata with error handling"""
        metadata_file = self.root_path / 'metadata' / 'dataset_info.json'

        try:
            if metadata_file.exists():
                with open(metadata_file, 'r') as f:
                    metadata = json.load(f)
            else:
                metadata = {'speakers': {}, 'last_updated': None}

            # Update speaker data
            if speaker_id not in metadata['speakers']:
                metadata['speakers'][speaker_id] = {
                    'total_recordings': 0,
                    'datasets': {}
                }

            if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
                metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
                    'recordings': 0,
                    'sentences': len(self.sentences),
                    'recorded_sentences': [],
                    'first_recording': datetime.now().isoformat(),
                    'last_recording': None,
                    'font_styles_used': []
                }

            # Update counts and timestamps
            metadata['speakers'][speaker_id]['total_recordings'] += 1
            metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
            metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
                datetime.now().isoformat()

            # Add current index to recorded sentences
            if self.current_index not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences']:
                metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences'].append(self.current_index)

            # Update font styles
            if self.current_font not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used']:
                metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used'].append(
                    self.current_font
                )

            metadata['last_updated'] = datetime.now().isoformat()

            # Save updated metadata
            with open(metadata_file, 'w') as f:
                json.dump(metadata, f, indent=2)

            self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")

        except Exception as e:
            error_msg = f"Error updating metadata: {str(e)}"
            self.log_operation(error_msg, "error")
            logger.error(traceback.format_exc())

    def get_navigation_info(self) -> Dict[str, Optional[str]]:
        """Get current and next sentence information"""
        if not self.sentences:
            return {
                'current': None,
                'next': None,
                'progress': "No text loaded"
            }

        current = self.get_styled_text(self.sentences[self.current_index])
        next_text = None

        if self.current_index < len(self.sentences) - 1:
            next_text = self.get_styled_text(self.sentences[self.current_index + 1])

        progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"

        return {
            'current': current,
            'next': next_text,
            'progress': progress
        }

    def navigate(self, direction: str) -> Dict[str, Optional[str]]:
        """Navigate through sentences"""
        if not self.sentences:
            return {
                'current': None,
                'next': None,
                'progress': "No text loaded",
                'status': "⚠️ Please load a text file first"
            }

        if direction == "next" and self.current_index < len(self.sentences) - 1:
            self.current_index += 1
        elif direction == "prev" and self.current_index > 0:
            self.current_index -= 1

        nav_info = self.get_navigation_info()
        nav_info['status'] = "✅ Navigation successful"

        return nav_info

    def get_dataset_statistics(self) -> Dict:
        """Get current dataset statistics"""
        try:
            metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
            if not metadata_file.exists():
                return {}
            with open(metadata_file, 'r') as f:
                metadata = json.load(f)
            # Flatten statistics for display
            total_sentences = len(self.sentences)
            recorded = sum(len(dataset.get('recorded_sentences', [])) for speaker in metadata['speakers'].values() for dataset in speaker['datasets'].values())
            remaining = total_sentences - recorded
            stats = {
                "Total Sentences": total_sentences,
                "Recorded Sentences": recorded,
                "Remaining Sentences": remaining,
                "Last Updated": metadata.get('last_updated', 'N/A')
            }
            return stats
        except Exception as e:
            logger.error(f"Error reading dataset statistics: {str(e)}")
            return {}

    def get_last_audio_path(self, speaker_id: str) -> Optional[str]:
        """Get the path to the last saved audio file for downloading"""
        audio_dir = self.root_path / 'audio' / speaker_id
        audio_files = sorted(audio_dir.glob('*.wav'), key=lambda f: f.stat().st_mtime, reverse=True)
        if audio_files:
            return str(audio_files[0])
        else:
            return None

    def get_last_transcript_path(self, speaker_id: str) -> Optional[str]:
        """Get the path to the last saved transcription file for downloading"""
        text_dir = self.root_path / 'transcriptions' / speaker_id
        text_files = sorted(text_dir.glob('*.txt'), key=lambda f: f.stat().st_mtime, reverse=True)
        if text_files:
            return str(text_files[0])
        else:
            return None

    def create_zip_archive(self, speaker_id: str) -> Optional[str]:
        """Create a ZIP archive of all recordings and transcriptions for a speaker"""
        try:
            from zipfile import ZipFile
            import tempfile
            
            # Create temporary zip file
            temp_dir = Path(tempfile.gettempdir())
            zip_path = temp_dir / f"{speaker_id}_recordings.zip"
            
            with ZipFile(zip_path, 'w') as zipf:
                # Add audio files
                audio_dir = self.root_path / 'audio' / speaker_id
                if audio_dir.exists():
                    for audio_file in audio_dir.glob('*.wav'):
                        zipf.write(audio_file, f"audio/{audio_file.name}")
                
                # Add transcription files
                text_dir = self.root_path / 'transcriptions' / speaker_id
                if text_dir.exists():
                    for text_file in text_dir.glob('*.txt'):
                        zipf.write(text_file, f"transcriptions/{text_file.name}")
            
            return str(zip_path)
        except Exception as e:
            logger.error(f"Error creating zip archive: {str(e)}")
            return None


def create_interface():
    """Create Gradio interface with enhanced features"""

    collector = TTSDatasetCollector()

    # Create custom CSS for fonts
    custom_css = """
    .gradio-container {
        max-width: 1200px !important;
    }
    .record-button {
        font-size: 1em !important;
        padding: 10px !important;
    }
    .sentence-display {
        font-size: 1.4em !important;
        padding: 15px !important;
        border: 1px solid #ddd !important;
        border-radius: 8px !important;
        margin: 10px 0 !important;
        min-height: 100px !important;
    }
    .small-input {
        max-width: 300px !important;
    }
    """

    # Include Google Fonts for Nastaliq and Naskh
    google_fonts_css = """
    @import url('https://fonts.googleapis.com/earlyaccess/notonastaliqurdu.css');
    @import url('https://fonts.googleapis.com/css2?family=Scheherazade+New&display=swap');
    """

    custom_css = google_fonts_css + custom_css

    with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
        gr.Markdown("# TTS Dataset Collection Tool")

        status = gr.Textbox(
            label="Status",
            interactive=False,
            max_lines=3,
            elem_classes=["small-input"]
        )

        with gr.Row():
            # Left column - Configuration and Input
            with gr.Column(scale=1):
                text_input = gr.Textbox(
                    label="Paste Text",
                    placeholder="Paste your text here...",
                    lines=5,
                    elem_classes=["small-input"],
                    interactive=True
                )
                file_input = gr.File(
                    label="Or Upload Text File (.txt)",
                    file_types=[".txt"],
                    elem_classes=["small-input"]
                )
                speaker_id = gr.Textbox(
                    label="Speaker ID",
                    placeholder="Enter unique speaker identifier (letters and numbers only)",
                    elem_classes=["small-input"]
                )
                dataset_name = gr.Textbox(
                    label="Dataset Name",
                    placeholder="Enter dataset name (letters and numbers only)",
                    elem_classes=["small-input"]
                )
                font_select = gr.Dropdown(
                    choices=list(FONT_STYLES.keys()),
                    value="english_serif",
                    label="Select Font Style",
                    elem_classes=["small-input"]
                )
                # Custom font upload
                with gr.Accordion("Custom Font Upload", open=False):
                    font_file_input = gr.File(
                        label="Upload Custom Font (.ttf)",
                        file_types=[".ttf"],
                        elem_classes=["small-input"],
                        type="filepath"
                    )
                    add_font_btn = gr.Button("Add Custom Font")

                # Dataset Info
                with gr.Accordion("Dataset Statistics", open=False):
                    dataset_info = gr.JSON(
                        label="",
                        value={}
                    )

            # Right column - Recording
            with gr.Column(scale=2):
                current_text = gr.HTML(
                    label="Current Sentence",
                    elem_classes=["sentence-display"]
                )
                next_text = gr.HTML(
                    label="Next Sentence",
                    elem_classes=["sentence-display"]
                )
                progress = gr.HTML("")

                with gr.Row():
                    audio_recorder = gr.Audio(
                        label="Record Audio",
                        type="filepath",
                        elem_classes=["record-button"],
                        interactive=True,
                        streaming=False  # Disable streaming to prevent freezing
                    )
                    clear_btn = gr.Button("Clear Recording", variant="secondary")

                # Controls
                with gr.Row():
                    prev_btn = gr.Button("Previous", variant="secondary")
                    save_btn = gr.Button("Save Recording", variant="primary")
                    next_btn = gr.Button("Next", variant="primary")

                # Download Links
                with gr.Row():
                    download_audio = gr.File(label="Download Last Audio", interactive=False)
                    download_transcript = gr.File(label="Download Last Transcript", interactive=False)
                    download_all = gr.File(label="Download All Recordings", interactive=False)

                def download_all_recordings(speaker_id_value):
                    """Handle downloading all recordings for a speaker"""
                    if not speaker_id_value:
                        return {
                            status: "⚠️ Please enter a Speaker ID first",
                            download_all: None
                        }
                    
                    zip_path = collector.create_zip_archive(speaker_id_value)
                    if zip_path:
                        return {
                            status: "✅ Archive created successfully",
                            download_all: zip_path
                        }
                    return {
                        status: "❌ Failed to create archive",
                        download_all: None
                    }

                # Add download all button and its event handler
                download_all_btn = gr.Button("Download All Recordings", variant="secondary")
                download_all_btn.click(
                    download_all_recordings,
                    inputs=[speaker_id],
                    outputs=[status, download_all]
                )

        # Add recordings display
        with gr.Column(scale=2):
            recordings_display = gr.HTML(
                label="Saved Recordings",
                value="<div id='recordings-list'></div>"
            )

        def process_pasted_text(text):
            """Handle pasted text input"""
            if not text:
                return {
                    current_text: "",
                    next_text: "",
                    progress: "",
                    status: "⚠️ No text provided",
                    dataset_info: collector.get_dataset_statistics()
                }

            success, msg = collector.process_text(text)
            if not success:
                return {
                    current_text: "",
                    next_text: "",
                    progress: "",
                    status: f"❌ {msg}",
                    dataset_info: collector.get_dataset_statistics()
                }

            nav_info = collector.get_navigation_info()
            progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
            return {
                current_text: nav_info['current'],
                next_text: nav_info['next'],
                progress: progress_bar,
                status: f"✅ {msg}",
                dataset_info: collector.get_dataset_statistics()
            }

        def update_font(font_style):
            """Update font and refresh display"""
            success, msg = collector.set_font(font_style)
            if not success:
                return {status: msg}

            nav_info = collector.get_navigation_info()
            return {
                current_text: nav_info['current'],
                next_text: nav_info['next'],
                status: f"Font updated to {font_style}"
            }

        def load_file(file):
            """Handle file loading with enhanced error reporting"""
            if not file:
                return {
                    current_text: "",
                    next_text: "",
                    progress: "",
                    status: "⚠️ No file selected",
                    dataset_info: collector.get_dataset_statistics()
                }

            success, msg = collector.load_text_file(file)
            if not success:
                return {
                    current_text: "",
                    next_text: "",
                    progress: "",
                    status: f"❌ {msg}",
                    dataset_info: collector.get_dataset_statistics()
                }

            nav_info = collector.get_navigation_info()
            progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
            return {
                current_text: nav_info['current'],
                next_text: nav_info['next'],
                progress: progress_bar,
                status: f"✅ {msg}",
                dataset_info: collector.get_dataset_statistics()
            }

        def save_current_recording(audio_file, speaker_id_value, dataset_name_value):
            """Handle saving the current recording"""
            if not audio_file:
                return {
                    status: "⚠️ Please record audio first",
                    download_audio: None,
                    download_transcript: None,
                    download_all: None,
                    recordings_display: "<div id='recordings-list'>No recordings yet</div>",
                    audio_recorder: None  # Clear the recorder
                }

            success, msg, recordings = collector.save_recording(
                audio_file, speaker_id_value, dataset_name_value
            )

            if not success:
                return {
                    status: f"❌ {msg}",
                    dataset_info: collector.get_dataset_statistics(),
                    download_audio: None,
                    download_transcript: None,
                    download_all: None,
                    recordings_display: "<div id='recordings-list'>No recordings yet</div>"
                }

            # Get paths to the saved files
            audio_path = collector.get_last_audio_path(speaker_id_value)
            transcript_path = collector.get_last_transcript_path(speaker_id_value)
            zip_path = collector.create_zip_archive(speaker_id_value)

            # Auto-advance to next sentence after successful save
            nav_info = collector.navigate("next")
            progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"

            # Update recordings display
            recordings_html = create_recordings_display(recordings)
            
            result = {
                current_text: nav_info['current'],
                next_text: nav_info['next'],
                progress: progress_bar,
                status: f"✅ {msg}",
                dataset_info: collector.get_dataset_statistics(),
                download_audio: audio_path,
                download_transcript: transcript_path,
                download_all: zip_path,
                recordings_display: recordings_html,
                audio_recorder: None  # Clear the recorder after successful save
            }
            return result

        def create_recordings_display(recordings):
            """Create HTML display for recordings"""
            recordings_html = "<div id='recordings-list'><h3>Saved Recordings:</h3>"
            for idx, rec in recordings.items():
                recordings_html += f"""
                <div style='margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px;'>
                    <p><strong>Sentence {idx + 1}:</strong> {rec['sentence']}</p>
                    <audio controls src='{rec['audio_file']}'></audio>
                </div>
                """
            recordings_html += "</div>"
            return recordings_html

        def navigate_sentences(direction):
            """Handle navigation between sentences"""
            nav_info = collector.navigate(direction)
            progress_bar = f"<progress value='{collector.current_index + 1}' max='{len(collector.sentences)}'></progress> {nav_info['progress']}"
            return {
                current_text: nav_info['current'],
                next_text: nav_info['next'],
                progress: progress_bar,
                status: nav_info['status']
            }

        def add_custom_font(font_file_path):
            """Handle adding a custom font"""
            if not font_file_path:
                return {
                    font_select: gr.update(),
                    status: "⚠️ No font file selected"
                }
            success, msg = collector.add_custom_font(font_file_path)
            if not success:
                return {
                    font_select: gr.update(),
                    status: f"❌ {msg}"
                }
            # Update font dropdown
            font_choices = list(FONT_STYLES.keys()) + list(collector.custom_fonts.keys())
            # Return updates to font_select and status
            return {
                font_select: gr.update(choices=font_choices),
                status: f"✅ {msg}"
            }

        def clear_recording():
            """Clear the current recording"""
            return {
                audio_recorder: None,
                status: "Recording cleared"
            }

        # Add clear button handler
        clear_btn.click(
            clear_recording,
            outputs=[audio_recorder, status]
        )

        # Event handlers
        text_input.change(
            process_pasted_text,
            inputs=[text_input],
            outputs=[current_text, next_text, progress, status, dataset_info]
        )

        file_input.upload(
            load_file,
            inputs=[file_input],
            outputs=[current_text, next_text, progress, status, dataset_info]
        )

        font_select.change(
            update_font,
            inputs=[font_select],
            outputs=[current_text, next_text, status]
        )

        add_font_btn.click(
            add_custom_font,
            inputs=[font_file_input],
            outputs=[font_select, status]
        )

        save_btn.click(
            save_current_recording,
            inputs=[audio_recorder, speaker_id, dataset_name],
            outputs=[current_text, next_text, progress, status, dataset_info, 
                    download_audio, download_transcript, download_all, recordings_display,
                    audio_recorder]  # Add audio_recorder to outputs
        )

        prev_btn.click(
            lambda: navigate_sentences("prev"),
            outputs=[current_text, next_text, progress, status]
        )

        next_btn.click(
            lambda: navigate_sentences("next"),
            outputs=[current_text, next_text, progress, status]
        )

        # Initialize dataset info
        dataset_info.value = collector.get_dataset_statistics()

    return interface

if __name__ == "__main__":
    try:
        # Set up any required environment variables
        os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
        os.environ["GRADIO_SERVER_PORT"] = "7860"

        # Create and launch the interface
        interface = create_interface()
        interface.queue()  # Enable queuing for better handling of concurrent users
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=True,
            debug=True,
            show_error=True
        )
    except Exception as e:
        logger.error(f"Failed to launch interface: {str(e)}")
        logger.error(traceback.format_exc())
        raise