File size: 6,100 Bytes
e00b5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import numpy as np
import torch
import soundfile as sf
import librosa
import gradio as gr
import spaces  # For ZeroGPU
from xcodec2.modeling_xcodec2 import XCodec2Model

# ====== Settings ======
BASE_REPO = os.getenv("BASE_REPO", "HKUSTAudio/xcodec2")               # Baseline (pretrained)
FT_REPO   = os.getenv("FT_REPO",   "NandemoGHS/Anime-XCodec2")         # Fine-tuned (yours)
TARGET_SR = 16000                                                       # XCodec2 expects 16 kHz
MAX_SECONDS_DEFAULT = 30                                               # Default max duration (seconds)

def _ensure_models():
    """Load both models to CPU once, and reuse across requests."""
    global _model_base, _model_ft
    if _model_base is None:
        _model_base = XCodec2Model.from_pretrained(BASE_REPO).eval().to("cpu")
    if _model_ft is None:
        _model_ft = XCodec2Model.from_pretrained(FT_REPO).eval().to("cpu")

# ====== Globals (lazy CPU load; move to GPU only during inference) ======
_model_base = None
_model_ft = None

_ensure_models()


def _load_audio(filepath: str, max_seconds: int):
    """
    Load audio (wav/flac/ogg/mp3), convert to mono, resample to 16 kHz,
    trim to the given max length (from the beginning), and return torch.Tensor (1, T).
    """
    # Try soundfile first, then fall back to librosa
    try:
        wav, sr = sf.read(filepath, dtype="float32", always_2d=False)
    except Exception:
        wav, sr = librosa.load(filepath, sr=None, mono=False)
        wav = np.asarray(wav, dtype=np.float32)

    # Mono
    if wav.ndim == 2:
        # soundfile often returns (frames, channels)
        if wav.shape[1] in (1, 2):  # (frames, ch)
            wav = wav.mean(axis=1)
        else:                       # Possibly (ch, frames)
            wav = wav.mean(axis=0)
    elif wav.ndim > 2:
        wav = np.mean(wav, axis=tuple(range(1, wav.ndim)))

    # Resample to 16 kHz
    if sr != TARGET_SR:
        wav = librosa.resample(wav, orig_sr=sr, target_sr=TARGET_SR)
        sr = TARGET_SR

    # Length cap
    if max_seconds is None or max_seconds <= 0:
        max_seconds = MAX_SECONDS_DEFAULT
    max_len = int(sr * max_seconds)
    if wav.shape[0] > max_len:
        wav = wav[:max_len]

    # Light safety normalization
    peak = np.max(np.abs(wav))
    if peak > 1.0:
        wav = wav / (peak + 1e-8)

    wav_tensor = torch.from_numpy(wav).float().unsqueeze(0)  # (1, T)
    return wav_tensor, sr

def _codes_to_tensor(codes, device):
    """
    Normalize the output of xcodec2.encode_code to a tensor with shape (1, 1, N).
    Handles version differences where the return type/shape may vary.
    """
    if isinstance(codes, torch.Tensor):
        return codes.to(device)
    try:
        t = torch.as_tensor(codes[0][0], device=device)
        return t.unsqueeze(0).unsqueeze(0) if t.ndim == 1 else t
    except Exception:
        return torch.as_tensor(codes, device=device)

def _reconstruct(model: XCodec2Model, waveform: torch.Tensor, device: str) -> np.ndarray:
    """Encode→decode with XCodec2 to get a reconstructed waveform (np.float32, clipped to [-1, 1])."""
    with torch.inference_mode():
        wave = waveform.to(device)
        codes = model.encode_code(input_waveform=wave)
        codes_t = _codes_to_tensor(codes, device=device)
        recon = model.decode_code(codes_t)  # (1, 1, T')
        recon_np = recon.squeeze().detach().cpu().numpy().astype(np.float32)
        recon_np = np.clip(recon_np, -1.0, 1.0)
    return recon_np

@spaces.GPU(duration=60)  # ZeroGPU: reserve GPU only during this function call
def run(audio_path, max_seconds):
    if audio_path is None:
        raise gr.Error("Please upload an audio file.")

    _ensure_models()
    waveform, sr = _load_audio(audio_path, max_seconds)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Baseline (pretrained)
    base = _model_base.to(device)
    recon_base = _reconstruct(base, waveform, device)

    # Fine-tuned
    ft = _model_ft.to(device)
    recon_ft = _reconstruct(ft, waveform, device)

    # Gradio Audio expects (sample_rate, np.ndarray)
    return (sr, recon_base), (sr, recon_ft)

# ====== UI ======
DESCRIPTION = """
# Anime‑XCodec2 / XCodec2 Reconstruction Demo
Compare **Baseline (HKUSTAudio/xcodec2)** and **Fine‑tuned (NandemoGHS/Anime‑XCodec2)** reconstructions side by side.

- Supported inputs: wav / flac / ogg / mp3  
- Input is automatically converted to **16 kHz** (as required by XCodec2).  
- ZeroGPU ready. If no GPU is available, it falls back to CPU (slower).
"""

with gr.Blocks(theme=gr.themes.Soft(), css="footer {visibility: hidden}") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Audio(
                sources=["upload"],
                type="filepath",
                label="Upload an audio file",
                waveform_options={"show_controls": True}
            )
            max_sec = gr.Slider(
                3, 60, value=MAX_SECONDS_DEFAULT, step=1,
                label="Max length (seconds)",
                info="If the input is longer, only the first N seconds will be processed."
            )
            run_btn = gr.Button("Run", variant="primary")
            gr.Markdown(
                f"**Baseline model**: `{BASE_REPO}`  \n"
                f"**Fine‑tuned model**: `{FT_REPO}`  \n"
                f"**Inference device**: auto (GPU on ZeroGPU)"
            )

        with gr.Column(scale=1):
            with gr.Row():
                out_base = gr.Audio(
                    label="Baseline reconstruction (HKUSTAudio/xcodec2)",
                    show_download_button=True, format="wav"
                )
                out_ft = gr.Audio(
                    label="Fine‑tuned reconstruction (NandemoGHS/Anime‑XCodec2)",
                    show_download_button=True, format="wav"
                )

    run_btn.click(run, inputs=[inp, max_sec], outputs=[out_base, out_ft])

# In Spaces, explicit launch is optional
if __name__ == "__main__":
    demo.queue(max_size=8).launch()