Spaces:
Running
on
L4
Running
on
L4
File size: 31,445 Bytes
c1ce505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
from deepsvg.difflib.tensor import SVGTensor
from deepsvg.utils.utils import _pack_group_batch, _unpack_group_batch, _make_seq_first, _make_batch_first, eval_decorator
from deepsvg.utils import bit2int
from .layers.transformer import *
from .layers.improved_transformer import *
from .layers.positional_encoding import *
from .vector_quantize_pytorch import VectorQuantize
from .basic_blocks import FCN, HierarchFCN, ResNet, ArgumentFCN
from .config import _DefaultConfig
from .utils import (_get_padding_mask, _get_key_padding_mask, _get_group_mask, _get_visibility_mask,
_get_key_visibility_mask, _generate_square_subsequent_mask, _sample_categorical, _threshold_sample)
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from scipy.optimize import linear_sum_assignment
from einops import rearrange
from random import randint
class SVGEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig, seq_len, use_group=True, group_len=None):
super().__init__()
self.cfg = cfg
# command embedding
self.command_embed = nn.Embedding(cfg.n_commands, cfg.d_model) # (7, 256)
self.embed_fcn = nn.Linear(cfg.n_args, cfg.d_model)
self.use_group = use_group
if use_group:
if group_len is None:
group_len = cfg.max_num_groups
self.group_embed = nn.Embedding(group_len+2, cfg.d_model)
self.pos_encoding = PositionalEncodingLUT(cfg.d_model, max_len=seq_len+2, dropout=cfg.dropout)
self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)
self._init_embeddings()
def _init_embeddings(self):
nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in")
nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in")
# if not self.cfg.bin_targets:
# nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in")
if self.use_group:
nn.init.kaiming_normal_(self.group_embed.weight, mode="fan_in")
def forward(self, commands, args, groups=None):
# commands.shape (32, 960) = (max_seq_len + 2, max_num_groups * batch_size)
S, GN = commands.shape
src = self.command_embed(commands.long()) + self.embed_fcn(args)
if self.use_group:
src = src + self.group_embed(groups.long())
src = self.pos_encoding(src)
return src
class ConstEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig, seq_len):
super().__init__()
self.cfg = cfg
self.seq_len = seq_len
self.PE = PositionalEncodingLUT(cfg.d_model, max_len=seq_len, dropout=cfg.dropout)
def forward(self, z):
N = z.size(1)
src = self.PE(z.new_zeros(self.seq_len, N, self.cfg.d_model))
return src
class LabelEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super().__init__()
self.label_embedding = nn.Embedding(cfg.n_labels, cfg.dim_label)
self._init_embeddings()
def _init_embeddings(self):
nn.init.kaiming_normal_(self.label_embedding.weight, mode="fan_in")
def forward(self, label):
src = self.label_embedding(label)
return src
class Encoder(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super().__init__()
self.cfg = cfg
seq_len = cfg.max_seq_len if cfg.encode_stages == 2 else cfg.max_total_len
self.use_group = cfg.encode_stages == 1
self.embedding = SVGEmbedding(cfg, seq_len, use_group=self.use_group)
if cfg.label_condition:
self.label_embedding = LabelEmbedding(cfg)
dim_label = cfg.dim_label if cfg.label_condition else None
if cfg.model_type == "transformer":
encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
encoder_norm = LayerNorm(cfg.d_model)
self.encoder = TransformerEncoder(encoder_layer, cfg.n_layers, encoder_norm)
else: # "lstm"
self.encoder = nn.LSTM(cfg.d_model, cfg.d_model // 2, dropout=cfg.dropout, bidirectional=True)
if cfg.encode_stages == 2:
if not cfg.self_match:
self.hierarchical_PE = PositionalEncodingLUT(cfg.d_model, max_len=cfg.max_num_groups)
# hierarchical_encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
# hierarchical_encoder_norm = LayerNorm(cfg.d_model)
# self.hierarchical_encoder = TransformerEncoder(hierarchical_encoder_layer, cfg.n_layers, hierarchical_encoder_norm)
def forward(self, commands, args, label=None):
# commands.shape: [batch_size, max_num_groups, max_seq_len + 2]
# args.shape: [batch_size, max_num_groups, max_seq_len + 2, n_args]
S, G, N = commands.shape
l = self.label_embedding(label).unsqueeze(0).unsqueeze(0).repeat(1, commands.size(1), 1, 1) if self.cfg.label_condition else None
# if self.cfg.encode_stages == 2:
# visibility_mask, key_visibility_mask = _get_visibility_mask(commands, seq_dim=0), _get_key_visibility_mask(commands, seq_dim=0)
commands, args, l = _pack_group_batch(commands, args, l)
# commands.shape: [batch_size, max_num_groups * (max_seq_len + 2)]
# key_padding_mask 使得在做 attention 的时候可以遮住 <PAD>
padding_mask, key_padding_mask = _get_padding_mask(commands, seq_dim=0), _get_key_padding_mask(commands, seq_dim=0)
group_mask = _get_group_mask(commands, seq_dim=0) if self.use_group else None
# cmd_src, args_src = self.embedding(commands, args, group_mask)
src = self.embedding(commands, args, group_mask)
if self.cfg.model_type == "transformer":
memory = self.encoder(src, mask=None, src_key_padding_mask=key_padding_mask, memory2=l)
z = memory * padding_mask # 不对 command 做 avg
else: # "lstm"
hidden_cell = (src.new_zeros(2, N, self.cfg.d_model // 2),
src.new_zeros(2, N, self.cfg.d_model // 2))
sequence_lengths = padding_mask.sum(dim=0).squeeze(-1)
x = pack_padded_sequence(src, sequence_lengths, enforce_sorted=False)
packed_output, _ = self.encoder(x, hidden_cell)
memory, _ = pad_packed_sequence(packed_output)
idx = (sequence_lengths - 1).long().view(1, -1, 1).repeat(1, 1, self.cfg.d_model)
z = memory.gather(dim=0, index=idx)
# cmd_z, args_z = _unpack_group_batch(N, cmd_z, args_z)
z = _unpack_group_batch(N, z)
# 为什么不用 encode_stages == 1 这个 flag 来实现单个 encoder?
# 当 encode_stages = 1 时, 获取 data 会有一个 group 操作. 现在尽量不修改原来的代码逻辑
if self.cfg.one_encoder:
return z.transpose(0, 1)
if self.cfg.encode_stages == 2:
assert False, 'not use E2'
# src = z.transpose(0, 1)
# src = _pack_group_batch(src)
# l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None
# if not self.cfg.self_match:
# src = self.hierarchical_PE(src)
# memory = self.hierarchical_encoder(src, mask=None, src_key_padding_mask=key_visibility_mask, memory2=l)
# if self.cfg.quantize_path:
# z = (memory * visibility_mask)
# else:
# z = (memory * visibility_mask).sum(dim=0, keepdim=True) / visibility_mask.sum(dim=0, keepdim=True)
# z = _unpack_group_batch(N, z)
return z
class VAE(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(VAE, self).__init__()
self.enc_mu_fcn = nn.Linear(cfg.d_model, cfg.dim_z)
self.enc_sigma_fcn = nn.Linear(cfg.d_model, cfg.dim_z)
self._init_embeddings()
def _init_embeddings(self):
nn.init.normal_(self.enc_mu_fcn.weight, std=0.001)
nn.init.constant_(self.enc_mu_fcn.bias, 0)
nn.init.normal_(self.enc_sigma_fcn.weight, std=0.001)
nn.init.constant_(self.enc_sigma_fcn.bias, 0)
def forward(self, z):
mu, logsigma = self.enc_mu_fcn(z), self.enc_sigma_fcn(z)
sigma = torch.exp(logsigma / 2.)
z = mu + sigma * torch.randn_like(sigma)
return z, mu, logsigma
class Bottleneck(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(Bottleneck, self).__init__()
self.bottleneck = nn.Linear(cfg.d_model, cfg.dim_z)
def forward(self, z):
return self.bottleneck(z)
class Decoder(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(Decoder, self).__init__()
self.cfg = cfg
if cfg.label_condition:
self.label_embedding = LabelEmbedding(cfg)
dim_label = cfg.dim_label if cfg.label_condition else None
if cfg.decode_stages == 2:
# self.hierarchical_embedding = ConstEmbedding(cfg, cfg.num_groups_proposal)
# hierarchical_decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
# hierarchical_decoder_norm = LayerNorm(cfg.d_model)
# self.hierarchical_decoder = TransformerDecoder(hierarchical_decoder_layer, cfg.n_layers_decode, hierarchical_decoder_norm)
self.hierarchical_fcn = HierarchFCN(cfg.d_model, cfg.dim_z)
if cfg.pred_mode == "autoregressive":
self.embedding = SVGEmbedding(cfg, cfg.max_total_len, rel_args=cfg.rel_targets, use_group=True, group_len=cfg.max_total_len)
square_subsequent_mask = _generate_square_subsequent_mask(self.cfg.max_total_len+1)
self.register_buffer("square_subsequent_mask", square_subsequent_mask)
else: # "one_shot"
seq_len = cfg.max_seq_len+1 if cfg.decode_stages == 2 else cfg.max_total_len+1
self.embedding = ConstEmbedding(cfg, seq_len)
if cfg.args_decoder:
self.argument_embedding = ConstEmbedding(cfg, seq_len)
if cfg.model_type == "transformer":
decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
decoder_norm = LayerNorm(cfg.d_model)
self.decoder = TransformerDecoder(decoder_layer, cfg.n_layers_decode, decoder_norm)
else: # "lstm"
self.fc_hc = nn.Linear(cfg.dim_z, 2 * cfg.d_model)
self.decoder = nn.LSTM(cfg.d_model, cfg.d_model, dropout=cfg.dropout)
if cfg.rel_targets:
args_dim = 2 * cfg.args_dim
if cfg.bin_targets:
args_dim = 8
else:
args_dim = cfg.args_dim + 1
self.fcn = FCN(cfg.d_model, cfg.n_commands, cfg.n_args, args_dim, cfg.abs_targets)
def _get_initial_state(self, z):
hidden, cell = torch.split(torch.tanh(self.fc_hc(z)), self.cfg.d_model, dim=2)
hidden_cell = hidden.contiguous(), cell.contiguous()
return hidden_cell
def forward(self, z, commands, args, label=None, hierarch_logits=None, return_hierarch=False):
N = z.size(2)
l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None
if hierarch_logits is None:
# z = _pack_group_batch(z)
visibility_z = _pack_group_batch(torch.mean(z[:, 1:, ...], dim=1, keepdim=True)) # 负责预测 visibility, 并且把 SOS 移除
if self.cfg.decode_stages == 2:
if hierarch_logits is None:
# src = self.hierarchical_embedding(z)
# # print('D2 PE src', src.shape)
# # print('D2 con z', z.shape)
# out = self.hierarchical_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
# # print('D2 out', out.shape)
# hierarch_logits, _z = self.hierarchical_fcn(out)
# # print('hierarch_logits origin', hierarch_logits.shape)
# only linear layer for visibility prediction
hierarch_logits, _z = self.hierarchical_fcn(visibility_z)
if self.cfg.label_condition: l = l.unsqueeze(0).repeat(1, z.size(1), 1, 1)
hierarch_logits, l = _pack_group_batch(hierarch_logits, l)
if not self.cfg.connect_through:
z = _pack_group_batch(_z)
if return_hierarch:
return _unpack_group_batch(N, hierarch_logits, z)
if self.cfg.pred_mode == "autoregressive":
S = commands.size(0)
commands, args = _pack_group_batch(commands, args)
group_mask = _get_group_mask(commands, seq_dim=0)
src = self.embedding(commands, args, group_mask)
if self.cfg.model_type == "transformer":
key_padding_mask = _get_key_padding_mask(commands, seq_dim=0)
out = self.decoder(src, z, tgt_mask=self.square_subsequent_mask[:S, :S], tgt_key_padding_mask=key_padding_mask, memory2=l)
else: # "lstm"
hidden_cell = self._get_initial_state(z) # TODO: reinject intermediate state
out, _ = self.decoder(src, hidden_cell)
else: # "one_shot"
if self.cfg.connect_through:
z = rearrange(z, 'p c b d -> c (p b) d')
z = z[1:, ...]
src = self.embedding(z)
out = self.decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
# print('D1 out', out.shape)
if self.cfg.args_decoder:
command_logits = self.command_fcn(out)
z = torch.argmax(command_logits, dim=-1).unsqueeze(-1).float()
src = self.argument_embedding(z)
# print('D0 PE src', src.shape)
# print('D0 con z', z.shape)
out = self.argument_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
# print('D0 out', out.shape)
args_logits = self.argument_fcn(out)
else:
# command_logits, args_logits = self.fcn(cmd_out, args_out)
command_logits, args_logits = self.fcn(out)
out_logits = (command_logits, args_logits) + ((hierarch_logits,) if self.cfg.decode_stages == 2 else ())
return _unpack_group_batch(N, *out_logits)
class SVGTransformer(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(SVGTransformer, self).__init__()
self.cfg = cfg
# self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1 # 257
if cfg.rel_targets:
args_dim = 2 * cfg.args_dim
if cfg.bin_targets:
args_dim = 8
else:
args_dim = cfg.args_dim + 1
if self.cfg.encode_stages > 0:
self.encoder = Encoder(cfg)
if cfg.use_resnet:
self.resnet = ResNet(cfg.d_model)
if cfg.use_vae:
self.vae = VAE(cfg)
else:
self.bottleneck = Bottleneck(cfg)
# self.bottleneck2 = Bottleneck(cfg)
self.encoder_norm = LayerNorm(cfg.dim_z, elementwise_affine=False)
if cfg.use_vqvae:
self.vqvae = VectorQuantize(
dim = cfg.dim_z,
codebook_size = cfg.codebook_size,
decay = 0.8,
commitment_weight = 0.,
use_cosine_sim = cfg.use_cosine_sim,
)
self.decoder = Decoder(cfg)
# 定义 self.cmd_args_mask, 但是分配一块持久性缓冲区
self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)
def perfect_matching(self, command_logits, args_logits, hierarch_logits, tgt_commands, tgt_args):
with torch.no_grad():
N, G, S, n_args = tgt_args.shape
visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1)
padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1)
# Unsqueeze
tgt_commands, tgt_args, tgt_hierarch = tgt_commands.unsqueeze(2), tgt_args.unsqueeze(2), visibility_mask.unsqueeze(2)
command_logits, args_logits, hierarch_logits = command_logits.unsqueeze(1), args_logits.unsqueeze(1), hierarch_logits.unsqueeze(1).squeeze(-2)
# Loss
tgt_hierarch, hierarch_logits = tgt_hierarch.repeat(1, 1, self.cfg.num_groups_proposal), hierarch_logits.repeat(1, G, 1, 1)
tgt_commands, command_logits = tgt_commands.repeat(1, 1, self.cfg.num_groups_proposal, 1), command_logits.repeat(1, G, 1, 1, 1)
tgt_args, args_logits = tgt_args.repeat(1, 1, self.cfg.num_groups_proposal, 1, 1), args_logits.repeat(1, G, 1, 1, 1, 1)
padding_mask, mask = padding_mask.unsqueeze(2).repeat(1, 1, self.cfg.num_groups_proposal, 1), self.cmd_args_mask[tgt_commands.long()]
loss_args = F.cross_entropy(args_logits.reshape(-1, self.args_dim), tgt_args.reshape(-1).long() + 1, reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S, n_args) # shift due to -1 PAD_VAL
loss_cmd = F.cross_entropy(command_logits.reshape(-1, self.cfg.n_commands), tgt_commands.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S)
loss_hierarch = F.cross_entropy(hierarch_logits.reshape(-1, 2), tgt_hierarch.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal)
loss_args = (loss_args * mask).sum(dim=[-1, -2]) / mask.sum(dim=[-1, -2])
loss_cmd = (loss_cmd * padding_mask).sum(dim=-1) / padding_mask.sum(dim=-1)
loss = 2.0 * loss_args + 1.0 * loss_cmd + 1.0 * loss_hierarch
# Iterate over the batch-dimension
assignment_list = []
full_set = set(range(self.cfg.num_groups_proposal))
for i in range(N):
costs = loss[i]
mask = visibility_mask[i]
_, assign = linear_sum_assignment(costs[mask].cpu())
assign = assign.tolist()
assignment_list.append(assign + list(full_set - set(assign)))
assignment = torch.tensor(assignment_list, device=command_logits.device)
return assignment.unsqueeze(-1).unsqueeze(-1)
@property
def origin_empty_path(self):
return torch.tensor([
11, 16, 7, 23, 24, 10, 13, 5, 1, 8, 3, 3, 7, 15, 7, 18, 15, 31,
21, 31, 16, 10, 2, 14, 26, 14, 6, 13, 7, 28, 11, 19, 9, 6, 7, 1,
22, 31, 21, 4, 21, 6, 1, 4, 15, 13, 10, 19, 9, 13, 21, 29, 12, 13,
10, 23, 15, 11, 1, 18, 19, 5, 23, 20, 7, 29, 13, 15, 22, 31, 17, 10,
21, 28, 13, 20, 24, 30, 21, 28, 5, 22, 14, 15, 3, 7, 14, 1, 19, 23,
30, 25, 26, 27, 11, 23, 8, 6, 3, 31, 28, 29, 11, 1, 3, 6, 4, 12,
12, 25, 0, 18, 5, 26, 5, 12, 23, 14, 19, 25, 12, 20, 2, 3, 18, 11,
1, 12
])
# for dalle usage
# indices = model.get_codebook_indices(*model_args)
# commands_y, args_y = model.decode(indices)
@torch.no_grad()
@eval_decorator
def get_codebook_indices(self, commands_enc, args_enc, commands_dec, args_dec):
indices = self(commands_enc, args_enc, commands_dec, args_dec, return_indices=True)
return indices
@torch.no_grad()
@eval_decorator
def decode(self, codebook_indices):
torch.set_printoptions(profile='full')
print(codebook_indices.reshape(self.cfg.max_num_groups, self.cfg.max_seq_len + 2))
z = self.vqvae.codebook[codebook_indices] # shape [batch_size, num_of_indices, codebook_dim]
# args_z = self.args_vqvae.codebook[codebook_indices]
batch_size = z.shape[0]
z = z.reshape(self.cfg.max_num_groups, -1, batch_size, self.cfg.dim_z)
out_logits = self.decoder(z, None, None)
out_logits = _make_batch_first(*out_logits)
res = {
"command_logits": out_logits[0], # shape [batch_size, path_num, command_num + 1, 5]
"args_logits": out_logits[1], # shape [batch_size, path_num, command_num + 1, 6]
"visibility_logits": out_logits[2]
}
# hack
# commands_y, args_y, _ = self.greedy_sample(res=res, commands_dec=cmd_indices)
commands_y, args_y, _ = self.greedy_sample(res=res)
# visualization, but it is not responsible for decode()
# tensor_pred = SVGTensor.from_cmd_args(commands_y[0].cpu(), args_y[0].cpu())
# svg_path_sample = SVG.from_tensor(tensor_pred.data, viewbox=Bbox(256), allow_empty=True).normalize().zoom(1.5)
# svg_path_sample.fill_(True)
# svg_path_sample.save_svg('test.svg')
return commands_y, args_y
def forward(self, commands_enc, args_enc, commands_dec, args_dec, label=None,
z=None, hierarch_logits=None,
return_tgt=True, params=None, encode_mode=False, return_hierarch=False, return_indices=False):
# commands_enc 中包含 commands 的类型
# commands_enc.shape: [batch_size, max_num_groups, max_seq_len + 2]
# args_enc.shape: [batch_size, max_num_groups, max_seq_len + 2, n_args]
# commands_dec.shape: [batch_size, max_num_groups, max_seq_len + 2]
# args_dec.shape: [batch_size, max_num_groups, max_seq_len + 2, n_args]
# assert args_enc.equal(args_dec)
commands_enc, args_enc = _make_seq_first(commands_enc, args_enc) # Possibly None, None
commands_dec_, args_dec_ = _make_seq_first(commands_dec, args_dec)
# commands_enc.shape: [max_seq_len + 2, max_num_groups, batch_size]
# args_enc.shape: [max_seq_len + 2, max_num_groups, batch_size, 11]
if z is None:
z = self.encoder(commands_enc, args_enc, label)
# cmd_z, args_z = self.encoder(commands_enc, args_enc, label)
# print('encoded z', z.shape)
if self.cfg.use_resnet:
z = self.resnet(z)
if self.cfg.use_vae:
z, mu, logsigma = self.vae(z)
else:
# z = self.bottleneck(z)
z = self.encoder_norm(self.bottleneck(z))
# cmd_z = self.encoder_norm(self.bottleneck(cmd_z))
# args_z = self.encoder_norm(self.bottleneck2(args_z))
# print('bottleneck z', z)
# print('normed z', z, z.shape)
if self.cfg.use_vqvae or self.cfg.use_rqvae:
# initial z.shape [num_path, 1, batch_size, dim_z]
# batch_size, max_num_groups = cmd_z.shape[2], cmd_z.shape[0]
batch_size, max_num_groups = z.shape[2], z.shape[0]
# print(z.shape)
# z = z.reshape(batch_size, -1, self.cfg.dim_z)
# z = z.reshape(max_num_groups, -1, self.cfg.dim_z)
z = rearrange(z, 'p c b z -> b (p c) z')
# cmd_z = cmd_z.reshape(batch_size, -1, self.cfg.dim_z)
# args_z = args_z.reshape(batch_size, -1, self.cfg.dim_z)
# print(z.shape)
# z = rearrange(z, 'p 1 b d -> b 1 p d') # p: num_of_path
# # b: batch_size
# # d: dim_z
# z = self.conv_enc_layer(z)
# z = rearrange(z, 'b c p d -> b (p d) c') # b d c: batch_size, dim_z, num_channel
if self.cfg.use_vqvae:
quantized, indices, commit_loss = self.vqvae(z) # tokenization
else:
quantized, indices, commit_loss = self.rqvae(z)
if return_indices:
return indices
# z = rearrange(quantized, 'b (p d) c -> b c p d', p = max_num_groups if self.cfg.quantize_path else 1)
# z = self.conv_dec_layer(z)
# z = rearrange(z, 'b 1 p d -> p 1 b d')
# z = quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
z = rearrange(quantized, 'b (p c) z -> p c b z', p = max_num_groups)
# cmd_z = cmd_quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
# args_z = args_quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
# print(indices)
# print('quantized z', z.shape)
else:
z = _make_seq_first(z)
if encode_mode: return z
if return_tgt: # Train mode
# remove EOS command
# [max_seq_len + 1, max_num_groups, batch_size]
commands_dec_, args_dec_ = commands_dec_[:-1], args_dec_[:-1]
out_logits = self.decoder(z, commands_dec_, args_dec_, label, hierarch_logits=hierarch_logits,
return_hierarch=return_hierarch)
if return_hierarch:
return out_logits
out_logits = _make_batch_first(*out_logits)
if return_tgt and self.cfg.self_match: # Assignment
assert self.cfg.decode_stages == 2 # Self-matching expects two-stage decoder
command_logits, args_logits, hierarch_logits = out_logits
assignment = self.perfect_matching(command_logits, args_logits, hierarch_logits, commands_dec[..., 1:], args_dec[..., 1:, :])
command_logits = torch.gather(command_logits, dim=1, index=assignment.expand_as(command_logits))
args_logits = torch.gather(args_logits, dim=1, index=assignment.unsqueeze(-1).expand_as(args_logits))
hierarch_logits = torch.gather(hierarch_logits, dim=1, index=assignment.expand_as(hierarch_logits))
out_logits = (command_logits, args_logits, hierarch_logits)
res = {
"command_logits": out_logits[0],
"args_logits": out_logits[1]
}
if self.cfg.decode_stages == 2:
res["visibility_logits"] = out_logits[2]
if return_tgt:
res["tgt_commands"] = commands_dec
res["tgt_args"] = args_dec
if self.cfg.use_vae:
res["mu"] = _make_batch_first(mu)
res["logsigma"] = _make_batch_first(logsigma)
if self.cfg.use_vqvae:
res["vqvae_loss"] = commit_loss
return res
def greedy_sample(self, commands_enc=None, args_enc=None, commands_dec=None, args_dec=None, label=None,
z=None, hierarch_logits=None,
concat_groups=True, temperature=0.0001, res=None):
if self.cfg.pred_mode == "one_shot":
if res is None:
res = self.forward(commands_enc, args_enc, commands_dec, args_dec, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=True)
commands_y = _sample_categorical(temperature, res["command_logits"])
# hack
# commands_y = commands_dec.reshape(1, 8, 32)[..., 1:]
if self.cfg.abs_targets:
# 此时 args 不需要采样
# 模型可能直接输出 -1, 所以我们不需要 args_y -= 1
# 但是 SVG 坐标的范围是 0-255, 我们仍然需要 clamp, 并手动将其转换为整数
# 那些应该填 "-1" 的位置会在 _make_valid 中被 mask 过滤掉
# args_y = torch.clamp(res['args_logits'], min=0, max=255).int()
# args_y = torch.clamp(res['args_logits'], min=0, max=256)
# args_y = (res['args_logits'] + 1) * 128 - 1
args_y = (res['args_logits'] + 1) * 12
elif self.cfg.bin_targets:
# 此时 args 也不需要采样
# 我们需要一个 threshold, logits < threshold is 0, logits >= threshold is 1
threshold = 0.0
args_logits = res['args_logits']
args_y = torch.where(args_logits > threshold, torch.ones_like(args_logits), torch.zeros_like(args_logits))
args_y = bit2int(args_y)
else:
args_y = _sample_categorical(temperature, res["args_logits"])
args_y -= 1 # shift due to -1 PAD_VAL
visibility_y = _threshold_sample(res["visibility_logits"], threshold=0.7).bool().squeeze(-1) if self.cfg.decode_stages == 2 else None
commands_y, args_y = self._make_valid(commands_y, args_y, visibility_y)
else:
if z is None:
z = self.forward(commands_enc, args_enc, None, None, label=label, encode_mode=True)
PAD_VAL = 0
commands_y, args_y = z.new_zeros(1, 1, 1).fill_(SVGTensor.COMMANDS_SIMPLIFIED.index("SOS")).long(), z.new_ones(1, 1, 1, self.cfg.n_args).fill_(PAD_VAL).long()
for i in range(self.cfg.max_total_len):
res = self.forward(None, None, commands_y, args_y, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False)
commands_new_y, args_new_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"])
args_new_y -= 1 # shift due to -1 PAD_VAL
_, args_new_y = self._make_valid(commands_new_y, args_new_y)
commands_y, args_y = torch.cat([commands_y, commands_new_y[..., -1:]], dim=-1), torch.cat([args_y, args_new_y[..., -1:, :]], dim=-2)
commands_y, args_y = commands_y[..., 1:], args_y[..., 1:, :] # Discard SOS token
if self.cfg.rel_targets:
args_y = self._make_absolute(commands_y, args_y)
if concat_groups:
N = commands_y.size(0)
# 必须使用 commands_y, 而不能用 tgt_commands
# 因为 commands_y 可能会有多余的 EOS, EOS 是无法可视化的
padding_mask_y = _get_padding_mask(commands_y, seq_dim=-1).bool()
commands_y, args_y = commands_y[padding_mask_y].reshape(N, -1), args_y[padding_mask_y].reshape(N, -1, self.cfg.n_args)
return commands_y, args_y, res
def _make_valid(self, commands_y, args_y, visibility_y=None, PAD_VAL=0):
if visibility_y is not None:
S = commands_y.size(-1)
commands_y[~visibility_y] = commands_y.new_tensor([SVGTensor.COMMANDS_SIMPLIFIED.index("m"), *[SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")] * (S - 1)])
args_y[~visibility_y] = PAD_VAL
mask = self.cmd_args_mask[commands_y.long()].bool()
args_y[~mask] = PAD_VAL
return commands_y, args_y
def _make_absolute(self, commands_y, args_y):
mask = self.cmd_args_mask[commands_y.long()].bool()
args_y[mask] -= self.cfg.args_dim - 1
real_commands = commands_y < SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")
args_real_commands = args_y[real_commands]
end_pos = args_real_commands[:-1, SVGTensor.IndexArgs.END_POS].cumsum(dim=0)
args_real_commands[1:, SVGTensor.IndexArgs.CONTROL1] += end_pos
args_real_commands[1:, SVGTensor.IndexArgs.CONTROL2] += end_pos
args_real_commands[1:, SVGTensor.IndexArgs.END_POS] += end_pos
args_y[real_commands] = args_real_commands
_, args_y = self._make_valid(commands_y, args_y)
return args_y
|