File size: 31,445 Bytes
c1ce505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
from deepsvg.difflib.tensor import SVGTensor
from deepsvg.utils.utils import _pack_group_batch, _unpack_group_batch, _make_seq_first, _make_batch_first, eval_decorator
from deepsvg.utils import bit2int

from .layers.transformer import *
from .layers.improved_transformer import *
from .layers.positional_encoding import *
from .vector_quantize_pytorch import VectorQuantize
from .basic_blocks import FCN, HierarchFCN, ResNet, ArgumentFCN
from .config import _DefaultConfig
from .utils import (_get_padding_mask, _get_key_padding_mask, _get_group_mask, _get_visibility_mask,
                    _get_key_visibility_mask, _generate_square_subsequent_mask, _sample_categorical, _threshold_sample)

from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from scipy.optimize import linear_sum_assignment
from einops import rearrange

from random import randint 


class SVGEmbedding(nn.Module):
    def __init__(self, cfg: _DefaultConfig, seq_len, use_group=True, group_len=None):
        super().__init__()

        self.cfg = cfg

        # command embedding
        self.command_embed = nn.Embedding(cfg.n_commands, cfg.d_model)  # (7, 256)
        self.embed_fcn = nn.Linear(cfg.n_args, cfg.d_model)

        self.use_group = use_group
        if use_group:
            if group_len is None:
                group_len = cfg.max_num_groups
            self.group_embed = nn.Embedding(group_len+2, cfg.d_model)

        self.pos_encoding = PositionalEncodingLUT(cfg.d_model, max_len=seq_len+2, dropout=cfg.dropout)

        self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)

        self._init_embeddings()

    def _init_embeddings(self):
        nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in")
        nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in")

        # if not self.cfg.bin_targets:
        #     nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in")

        if self.use_group:
            nn.init.kaiming_normal_(self.group_embed.weight, mode="fan_in")

    def forward(self, commands, args, groups=None):
        # commands.shape (32, 960) = (max_seq_len + 2, max_num_groups * batch_size)
        S, GN = commands.shape

        src = self.command_embed(commands.long()) + self.embed_fcn(args)

        if self.use_group:
            src = src + self.group_embed(groups.long())

        src = self.pos_encoding(src)
        return src


class ConstEmbedding(nn.Module):
    def __init__(self, cfg: _DefaultConfig, seq_len):
        super().__init__()

        self.cfg = cfg

        self.seq_len = seq_len

        self.PE = PositionalEncodingLUT(cfg.d_model, max_len=seq_len, dropout=cfg.dropout)

    def forward(self, z):
        N = z.size(1)
        src = self.PE(z.new_zeros(self.seq_len, N, self.cfg.d_model))
        return src


class LabelEmbedding(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super().__init__()

        self.label_embedding = nn.Embedding(cfg.n_labels, cfg.dim_label)

        self._init_embeddings()

    def _init_embeddings(self):
        nn.init.kaiming_normal_(self.label_embedding.weight, mode="fan_in")

    def forward(self, label):
        src = self.label_embedding(label)
        return src


class Encoder(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super().__init__()

        self.cfg = cfg

        seq_len = cfg.max_seq_len if cfg.encode_stages == 2 else cfg.max_total_len
        self.use_group = cfg.encode_stages == 1
        self.embedding = SVGEmbedding(cfg, seq_len, use_group=self.use_group)

        if cfg.label_condition:
            self.label_embedding = LabelEmbedding(cfg)
        dim_label = cfg.dim_label if cfg.label_condition else None

        if cfg.model_type == "transformer":
            encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
            encoder_norm = LayerNorm(cfg.d_model)
            self.encoder = TransformerEncoder(encoder_layer, cfg.n_layers, encoder_norm)

        else:  # "lstm"
            self.encoder = nn.LSTM(cfg.d_model, cfg.d_model // 2, dropout=cfg.dropout, bidirectional=True)

        if cfg.encode_stages == 2:
            if not cfg.self_match:
                self.hierarchical_PE = PositionalEncodingLUT(cfg.d_model, max_len=cfg.max_num_groups)

            # hierarchical_encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
            # hierarchical_encoder_norm = LayerNorm(cfg.d_model)
            # self.hierarchical_encoder = TransformerEncoder(hierarchical_encoder_layer, cfg.n_layers, hierarchical_encoder_norm)

    def forward(self, commands, args, label=None):
        # commands.shape: [batch_size, max_num_groups, max_seq_len + 2]
        # args.shape:     [batch_size, max_num_groups, max_seq_len + 2, n_args]
        S, G, N = commands.shape
        l = self.label_embedding(label).unsqueeze(0).unsqueeze(0).repeat(1, commands.size(1), 1, 1) if self.cfg.label_condition else None

        # if self.cfg.encode_stages == 2:
        #     visibility_mask, key_visibility_mask = _get_visibility_mask(commands, seq_dim=0), _get_key_visibility_mask(commands, seq_dim=0)

        commands, args, l = _pack_group_batch(commands, args, l)
        # commands.shape: [batch_size, max_num_groups * (max_seq_len + 2)]
        # key_padding_mask 使得在做 attention 的时候可以遮住 <PAD>
        padding_mask, key_padding_mask = _get_padding_mask(commands, seq_dim=0), _get_key_padding_mask(commands, seq_dim=0)
        group_mask = _get_group_mask(commands, seq_dim=0) if self.use_group else None

        # cmd_src, args_src = self.embedding(commands, args, group_mask)
        src = self.embedding(commands, args, group_mask)

        if self.cfg.model_type == "transformer":
            memory = self.encoder(src, mask=None, src_key_padding_mask=key_padding_mask, memory2=l)
            z = memory * padding_mask # 不对 command 做 avg
        else:  # "lstm"
            hidden_cell = (src.new_zeros(2, N, self.cfg.d_model // 2),
                           src.new_zeros(2, N, self.cfg.d_model // 2))
            sequence_lengths = padding_mask.sum(dim=0).squeeze(-1)
            x = pack_padded_sequence(src, sequence_lengths, enforce_sorted=False)

            packed_output, _ = self.encoder(x, hidden_cell)

            memory, _ = pad_packed_sequence(packed_output)
            idx = (sequence_lengths - 1).long().view(1, -1, 1).repeat(1, 1, self.cfg.d_model)
            z = memory.gather(dim=0, index=idx)

        # cmd_z, args_z = _unpack_group_batch(N, cmd_z, args_z)
        z = _unpack_group_batch(N, z)

        # 为什么不用 encode_stages == 1 这个 flag 来实现单个 encoder?
        # 当 encode_stages = 1 时, 获取 data 会有一个 group 操作. 现在尽量不修改原来的代码逻辑
        if self.cfg.one_encoder:
            return z.transpose(0, 1)

        if self.cfg.encode_stages == 2:
            assert False, 'not use E2'
            # src = z.transpose(0, 1)
            # src = _pack_group_batch(src)
            # l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None

            # if not self.cfg.self_match:
            #     src = self.hierarchical_PE(src)

            # memory = self.hierarchical_encoder(src, mask=None, src_key_padding_mask=key_visibility_mask, memory2=l)

            # if self.cfg.quantize_path:
            #     z = (memory * visibility_mask)
            # else:
            #     z = (memory * visibility_mask).sum(dim=0, keepdim=True) / visibility_mask.sum(dim=0, keepdim=True)
            # z = _unpack_group_batch(N, z)

        return z


class VAE(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super(VAE, self).__init__()

        self.enc_mu_fcn = nn.Linear(cfg.d_model, cfg.dim_z)
        self.enc_sigma_fcn = nn.Linear(cfg.d_model, cfg.dim_z)

        self._init_embeddings()

    def _init_embeddings(self):
        nn.init.normal_(self.enc_mu_fcn.weight, std=0.001)
        nn.init.constant_(self.enc_mu_fcn.bias, 0)
        nn.init.normal_(self.enc_sigma_fcn.weight, std=0.001)
        nn.init.constant_(self.enc_sigma_fcn.bias, 0)

    def forward(self, z):
        mu, logsigma = self.enc_mu_fcn(z), self.enc_sigma_fcn(z)
        sigma = torch.exp(logsigma / 2.)
        z = mu + sigma * torch.randn_like(sigma)

        return z, mu, logsigma


class Bottleneck(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super(Bottleneck, self).__init__()

        self.bottleneck = nn.Linear(cfg.d_model, cfg.dim_z)

    def forward(self, z):
        return self.bottleneck(z)


class Decoder(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super(Decoder, self).__init__()

        self.cfg = cfg

        if cfg.label_condition:
            self.label_embedding = LabelEmbedding(cfg)
        dim_label = cfg.dim_label if cfg.label_condition else None

        if cfg.decode_stages == 2:
            # self.hierarchical_embedding = ConstEmbedding(cfg, cfg.num_groups_proposal)

            # hierarchical_decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
            # hierarchical_decoder_norm = LayerNorm(cfg.d_model)
            # self.hierarchical_decoder = TransformerDecoder(hierarchical_decoder_layer, cfg.n_layers_decode, hierarchical_decoder_norm)
            self.hierarchical_fcn = HierarchFCN(cfg.d_model, cfg.dim_z)

        if cfg.pred_mode == "autoregressive":
            self.embedding = SVGEmbedding(cfg, cfg.max_total_len, rel_args=cfg.rel_targets, use_group=True, group_len=cfg.max_total_len)

            square_subsequent_mask = _generate_square_subsequent_mask(self.cfg.max_total_len+1)
            self.register_buffer("square_subsequent_mask", square_subsequent_mask)
        else:  # "one_shot"
            seq_len = cfg.max_seq_len+1 if cfg.decode_stages == 2 else cfg.max_total_len+1
            self.embedding = ConstEmbedding(cfg, seq_len)
            if cfg.args_decoder:
                self.argument_embedding = ConstEmbedding(cfg, seq_len)

        if cfg.model_type == "transformer":
            decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
            decoder_norm = LayerNorm(cfg.d_model)
            self.decoder = TransformerDecoder(decoder_layer, cfg.n_layers_decode, decoder_norm)

        else:  # "lstm"
            self.fc_hc = nn.Linear(cfg.dim_z, 2 * cfg.d_model)
            self.decoder = nn.LSTM(cfg.d_model, cfg.d_model, dropout=cfg.dropout)

        if cfg.rel_targets:
            args_dim = 2 * cfg.args_dim
        if cfg.bin_targets:
            args_dim = 8
        else:
            args_dim = cfg.args_dim + 1

        self.fcn = FCN(cfg.d_model, cfg.n_commands, cfg.n_args, args_dim, cfg.abs_targets)

    def _get_initial_state(self, z):
        hidden, cell = torch.split(torch.tanh(self.fc_hc(z)), self.cfg.d_model, dim=2)
        hidden_cell = hidden.contiguous(), cell.contiguous()
        return hidden_cell

    def forward(self, z, commands, args, label=None, hierarch_logits=None, return_hierarch=False):
        N = z.size(2)
        l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None
        if hierarch_logits is None:
            # z = _pack_group_batch(z)
            visibility_z = _pack_group_batch(torch.mean(z[:, 1:, ...], dim=1, keepdim=True))  # 负责预测 visibility, 并且把 SOS 移除

        if self.cfg.decode_stages == 2:
            if hierarch_logits is None:
                # src = self.hierarchical_embedding(z)
                # # print('D2 PE src', src.shape)
                # # print('D2 con z', z.shape)
                # out = self.hierarchical_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
                # # print('D2 out', out.shape)
                # hierarch_logits, _z = self.hierarchical_fcn(out)
                # # print('hierarch_logits origin', hierarch_logits.shape)

                # only linear layer for visibility prediction
                hierarch_logits, _z = self.hierarchical_fcn(visibility_z)

            if self.cfg.label_condition: l = l.unsqueeze(0).repeat(1, z.size(1), 1, 1)

            hierarch_logits, l = _pack_group_batch(hierarch_logits, l)
            if not self.cfg.connect_through:
                z = _pack_group_batch(_z)

            if return_hierarch:
                return _unpack_group_batch(N, hierarch_logits, z)

        if self.cfg.pred_mode == "autoregressive":
            S = commands.size(0)
            commands, args = _pack_group_batch(commands, args)

            group_mask = _get_group_mask(commands, seq_dim=0)

            src = self.embedding(commands, args, group_mask)

            if self.cfg.model_type == "transformer":
                key_padding_mask = _get_key_padding_mask(commands, seq_dim=0)
                out = self.decoder(src, z, tgt_mask=self.square_subsequent_mask[:S, :S], tgt_key_padding_mask=key_padding_mask, memory2=l)
            else:  # "lstm"
                hidden_cell = self._get_initial_state(z)  # TODO: reinject intermediate state
                out, _ = self.decoder(src, hidden_cell)

        else:  # "one_shot"
            if self.cfg.connect_through:
                z = rearrange(z, 'p c b d -> c (p b) d')
                z = z[1:, ...]

            src = self.embedding(z)
            out = self.decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
            # print('D1 out', out.shape)

        if self.cfg.args_decoder:
            command_logits = self.command_fcn(out)
            z = torch.argmax(command_logits, dim=-1).unsqueeze(-1).float()
            src = self.argument_embedding(z)
            # print('D0 PE src', src.shape)
            # print('D0 con z', z.shape)
            out = self.argument_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
            # print('D0 out', out.shape)
            args_logits = self.argument_fcn(out)
        else:
            # command_logits, args_logits = self.fcn(cmd_out, args_out)
            command_logits, args_logits = self.fcn(out)

        out_logits = (command_logits, args_logits) + ((hierarch_logits,) if self.cfg.decode_stages == 2 else ())

        return _unpack_group_batch(N, *out_logits)


class SVGTransformer(nn.Module):
    def __init__(self, cfg: _DefaultConfig):
        super(SVGTransformer, self).__init__()

        self.cfg = cfg
        # self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1  # 257
        if cfg.rel_targets:
            args_dim = 2 * cfg.args_dim
        if cfg.bin_targets:
            args_dim = 8
        else:
            args_dim = cfg.args_dim + 1

        if self.cfg.encode_stages > 0:

            self.encoder = Encoder(cfg)

            if cfg.use_resnet:
                self.resnet = ResNet(cfg.d_model)

            if cfg.use_vae:
                self.vae = VAE(cfg)
            else:
                self.bottleneck = Bottleneck(cfg)
                # self.bottleneck2 = Bottleneck(cfg)
                self.encoder_norm = LayerNorm(cfg.dim_z, elementwise_affine=False)

            if cfg.use_vqvae:
                self.vqvae = VectorQuantize(
                    dim = cfg.dim_z,
                    codebook_size = cfg.codebook_size,
                    decay = 0.8,
                    commitment_weight = 0.,
                    use_cosine_sim = cfg.use_cosine_sim,
                )

        self.decoder = Decoder(cfg)

        # 定义 self.cmd_args_mask, 但是分配一块持久性缓冲区
        self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)

    def perfect_matching(self, command_logits, args_logits, hierarch_logits, tgt_commands, tgt_args):
        with torch.no_grad():
            N, G, S, n_args = tgt_args.shape
            visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1)
            padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1)

            # Unsqueeze
            tgt_commands, tgt_args, tgt_hierarch = tgt_commands.unsqueeze(2), tgt_args.unsqueeze(2), visibility_mask.unsqueeze(2)
            command_logits, args_logits, hierarch_logits = command_logits.unsqueeze(1), args_logits.unsqueeze(1), hierarch_logits.unsqueeze(1).squeeze(-2)

            # Loss
            tgt_hierarch, hierarch_logits = tgt_hierarch.repeat(1, 1, self.cfg.num_groups_proposal), hierarch_logits.repeat(1, G, 1, 1)
            tgt_commands, command_logits = tgt_commands.repeat(1, 1, self.cfg.num_groups_proposal, 1), command_logits.repeat(1, G, 1, 1, 1)
            tgt_args, args_logits = tgt_args.repeat(1, 1, self.cfg.num_groups_proposal, 1, 1), args_logits.repeat(1, G, 1, 1, 1, 1)

            padding_mask, mask = padding_mask.unsqueeze(2).repeat(1, 1, self.cfg.num_groups_proposal, 1), self.cmd_args_mask[tgt_commands.long()]

            loss_args = F.cross_entropy(args_logits.reshape(-1, self.args_dim), tgt_args.reshape(-1).long() + 1, reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S, n_args)    # shift due to -1 PAD_VAL
            loss_cmd = F.cross_entropy(command_logits.reshape(-1, self.cfg.n_commands), tgt_commands.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S)
            loss_hierarch = F.cross_entropy(hierarch_logits.reshape(-1, 2), tgt_hierarch.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal)

            loss_args = (loss_args * mask).sum(dim=[-1, -2]) / mask.sum(dim=[-1, -2])
            loss_cmd = (loss_cmd * padding_mask).sum(dim=-1) / padding_mask.sum(dim=-1)

            loss = 2.0 * loss_args + 1.0 * loss_cmd + 1.0 * loss_hierarch

        # Iterate over the batch-dimension
        assignment_list = []

        full_set = set(range(self.cfg.num_groups_proposal))
        for i in range(N):
            costs = loss[i]
            mask = visibility_mask[i]
            _, assign = linear_sum_assignment(costs[mask].cpu())
            assign = assign.tolist()
            assignment_list.append(assign + list(full_set - set(assign)))

        assignment = torch.tensor(assignment_list, device=command_logits.device)

        return assignment.unsqueeze(-1).unsqueeze(-1)

    @property
    def origin_empty_path(self):
        return torch.tensor([
            11, 16,  7, 23, 24, 10, 13,  5,  1,  8,  3,  3,  7, 15,  7, 18, 15, 31,
            21, 31, 16, 10,  2, 14, 26, 14,  6, 13,  7, 28, 11, 19,  9,  6,  7,  1,
            22, 31, 21,  4, 21,  6,  1,  4, 15, 13, 10, 19,  9, 13, 21, 29, 12, 13,
            10, 23, 15, 11,  1, 18, 19,  5, 23, 20,  7, 29, 13, 15, 22, 31, 17, 10,
            21, 28, 13, 20, 24, 30, 21, 28,  5, 22, 14, 15,  3,  7, 14,  1, 19, 23,
            30, 25, 26, 27, 11, 23,  8,  6,  3, 31, 28, 29, 11,  1,  3,  6,  4, 12,
            12, 25,  0, 18,  5, 26,  5, 12, 23, 14, 19, 25, 12, 20,  2,  3, 18, 11,
            1, 12
        ])

    # for dalle usage
    #   indices = model.get_codebook_indices(*model_args)
    #   commands_y, args_y = model.decode(indices)
    @torch.no_grad()
    @eval_decorator
    def get_codebook_indices(self, commands_enc, args_enc, commands_dec, args_dec):
        indices = self(commands_enc, args_enc, commands_dec, args_dec, return_indices=True)
        return indices

    @torch.no_grad()
    @eval_decorator
    def decode(self, codebook_indices):
        torch.set_printoptions(profile='full')
        print(codebook_indices.reshape(self.cfg.max_num_groups, self.cfg.max_seq_len + 2))
        z = self.vqvae.codebook[codebook_indices]  # shape [batch_size, num_of_indices, codebook_dim]
        # args_z = self.args_vqvae.codebook[codebook_indices]

        batch_size = z.shape[0]
        z = z.reshape(self.cfg.max_num_groups, -1, batch_size, self.cfg.dim_z)

        out_logits = self.decoder(z, None, None)
        out_logits = _make_batch_first(*out_logits)

        res = {
            "command_logits": out_logits[0],  # shape [batch_size, path_num, command_num + 1, 5]
            "args_logits": out_logits[1],     # shape [batch_size, path_num, command_num + 1, 6]
            "visibility_logits": out_logits[2]
        }

        # hack
        # commands_y, args_y, _ = self.greedy_sample(res=res, commands_dec=cmd_indices)
        commands_y, args_y, _ = self.greedy_sample(res=res)

        # visualization, but it is not responsible for decode()
        #   tensor_pred = SVGTensor.from_cmd_args(commands_y[0].cpu(), args_y[0].cpu())
        #   svg_path_sample = SVG.from_tensor(tensor_pred.data, viewbox=Bbox(256), allow_empty=True).normalize().zoom(1.5)
        #   svg_path_sample.fill_(True)
        #   svg_path_sample.save_svg('test.svg')

        return commands_y, args_y

    def forward(self, commands_enc, args_enc, commands_dec, args_dec, label=None,
                z=None, hierarch_logits=None,
                return_tgt=True, params=None, encode_mode=False, return_hierarch=False, return_indices=False):
        # commands_enc 中包含 commands 的类型
        # commands_enc.shape: [batch_size, max_num_groups, max_seq_len + 2]
        # args_enc.shape:     [batch_size, max_num_groups, max_seq_len + 2, n_args]
        # commands_dec.shape: [batch_size, max_num_groups, max_seq_len + 2]
        # args_dec.shape:     [batch_size, max_num_groups, max_seq_len + 2, n_args]
        # assert args_enc.equal(args_dec)
        commands_enc, args_enc = _make_seq_first(commands_enc, args_enc)  # Possibly None, None
        commands_dec_, args_dec_ = _make_seq_first(commands_dec, args_dec)
        # commands_enc.shape: [max_seq_len + 2, max_num_groups, batch_size]
        # args_enc.shape:     [max_seq_len + 2, max_num_groups, batch_size, 11]

        if z is None:
            z = self.encoder(commands_enc, args_enc, label)
            # cmd_z, args_z = self.encoder(commands_enc, args_enc, label)
            # print('encoded z', z.shape)

            if self.cfg.use_resnet:
                z = self.resnet(z)

            if self.cfg.use_vae:
                z, mu, logsigma = self.vae(z)
            else:
                # z = self.bottleneck(z)
                z = self.encoder_norm(self.bottleneck(z))
                # cmd_z = self.encoder_norm(self.bottleneck(cmd_z))
                # args_z = self.encoder_norm(self.bottleneck2(args_z))
                # print('bottleneck z', z)
                # print('normed z', z, z.shape)

            if self.cfg.use_vqvae or self.cfg.use_rqvae:
                # initial z.shape [num_path, 1, batch_size, dim_z]
                # batch_size, max_num_groups = cmd_z.shape[2], cmd_z.shape[0]
                batch_size, max_num_groups = z.shape[2], z.shape[0]

                # print(z.shape)
                # z = z.reshape(batch_size, -1, self.cfg.dim_z)
                # z = z.reshape(max_num_groups, -1, self.cfg.dim_z)
                z = rearrange(z, 'p c b z -> b (p c) z')
                # cmd_z = cmd_z.reshape(batch_size, -1, self.cfg.dim_z)
                # args_z = args_z.reshape(batch_size, -1, self.cfg.dim_z)
                # print(z.shape)

                # z = rearrange(z, 'p 1 b d -> b 1 p d')  # p: num_of_path
                #                                         # b: batch_size
                #                                         # d: dim_z
                # z = self.conv_enc_layer(z)
                # z = rearrange(z, 'b c p d -> b (p d) c')      # b d c: batch_size, dim_z, num_channel

                if self.cfg.use_vqvae:
                    quantized, indices, commit_loss = self.vqvae(z) # tokenization
                else:
                    quantized, indices, commit_loss = self.rqvae(z)

                if return_indices:
                    return indices

                # z = rearrange(quantized, 'b (p d) c -> b c p d', p = max_num_groups if self.cfg.quantize_path else 1)
                # z = self.conv_dec_layer(z)
                # z = rearrange(z, 'b 1 p d -> p 1 b d')
                # z = quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
                z = rearrange(quantized, 'b (p c) z -> p c b z', p = max_num_groups)

                # cmd_z = cmd_quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
                # args_z = args_quantized.reshape(max_num_groups, -1, batch_size, self.cfg.dim_z)
                # print(indices)
                # print('quantized z', z.shape)
        else:
            z = _make_seq_first(z)

        if encode_mode: return z

        if return_tgt:  # Train mode
            # remove EOS command
            # [max_seq_len + 1, max_num_groups, batch_size]
            commands_dec_, args_dec_ = commands_dec_[:-1], args_dec_[:-1]

        out_logits = self.decoder(z, commands_dec_, args_dec_, label, hierarch_logits=hierarch_logits,
                                  return_hierarch=return_hierarch)

        if return_hierarch:
            return out_logits

        out_logits = _make_batch_first(*out_logits)

        if return_tgt and self.cfg.self_match:  # Assignment
            assert self.cfg.decode_stages == 2  # Self-matching expects two-stage decoder
            command_logits, args_logits, hierarch_logits = out_logits

            assignment = self.perfect_matching(command_logits, args_logits, hierarch_logits, commands_dec[..., 1:], args_dec[..., 1:, :])

            command_logits = torch.gather(command_logits, dim=1, index=assignment.expand_as(command_logits))
            args_logits = torch.gather(args_logits, dim=1, index=assignment.unsqueeze(-1).expand_as(args_logits))
            hierarch_logits = torch.gather(hierarch_logits, dim=1, index=assignment.expand_as(hierarch_logits))

            out_logits = (command_logits, args_logits, hierarch_logits)

        res = {
            "command_logits": out_logits[0],
            "args_logits": out_logits[1]
        }

        if self.cfg.decode_stages == 2:
            res["visibility_logits"] = out_logits[2]

        if return_tgt:
            res["tgt_commands"] = commands_dec
            res["tgt_args"] = args_dec

            if self.cfg.use_vae:
                res["mu"] = _make_batch_first(mu)
                res["logsigma"] = _make_batch_first(logsigma)

            if self.cfg.use_vqvae:
                res["vqvae_loss"] = commit_loss
        return res

    def greedy_sample(self, commands_enc=None, args_enc=None, commands_dec=None, args_dec=None, label=None,
                      z=None, hierarch_logits=None,
                      concat_groups=True, temperature=0.0001, res=None):
        if self.cfg.pred_mode == "one_shot":
            if res is None:
                res = self.forward(commands_enc, args_enc, commands_dec, args_dec, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=True)

            commands_y = _sample_categorical(temperature, res["command_logits"])
            # hack
            # commands_y = commands_dec.reshape(1, 8, 32)[..., 1:]
            if self.cfg.abs_targets:
                # 此时 args 不需要采样
                # 模型可能直接输出 -1, 所以我们不需要 args_y -= 1
                # 但是 SVG 坐标的范围是 0-255, 我们仍然需要 clamp, 并手动将其转换为整数
                # 那些应该填 "-1" 的位置会在 _make_valid 中被 mask 过滤掉
                # args_y = torch.clamp(res['args_logits'], min=0, max=255).int()
                # args_y = torch.clamp(res['args_logits'], min=0, max=256)
                # args_y = (res['args_logits'] + 1) * 128 - 1
                args_y = (res['args_logits'] + 1) * 12
            elif self.cfg.bin_targets:
                # 此时 args 也不需要采样
                # 我们需要一个 threshold, logits < threshold is 0, logits >= threshold is 1
                threshold = 0.0
                args_logits = res['args_logits']
                args_y = torch.where(args_logits > threshold, torch.ones_like(args_logits), torch.zeros_like(args_logits))
                args_y = bit2int(args_y)
            else:
                args_y = _sample_categorical(temperature, res["args_logits"])
                args_y -= 1  # shift due to -1 PAD_VAL

            visibility_y = _threshold_sample(res["visibility_logits"], threshold=0.7).bool().squeeze(-1) if self.cfg.decode_stages == 2 else None
            commands_y, args_y = self._make_valid(commands_y, args_y, visibility_y)
        else:
            if z is None:
                z = self.forward(commands_enc, args_enc, None, None, label=label, encode_mode=True)

            PAD_VAL = 0
            commands_y, args_y = z.new_zeros(1, 1, 1).fill_(SVGTensor.COMMANDS_SIMPLIFIED.index("SOS")).long(), z.new_ones(1, 1, 1, self.cfg.n_args).fill_(PAD_VAL).long()

            for i in range(self.cfg.max_total_len):
                res = self.forward(None, None, commands_y, args_y, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False)
                commands_new_y, args_new_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"])
                args_new_y -= 1  # shift due to -1 PAD_VAL
                _, args_new_y = self._make_valid(commands_new_y, args_new_y)

                commands_y, args_y = torch.cat([commands_y, commands_new_y[..., -1:]], dim=-1), torch.cat([args_y, args_new_y[..., -1:, :]], dim=-2)

            commands_y, args_y = commands_y[..., 1:], args_y[..., 1:, :]  # Discard SOS token

        if self.cfg.rel_targets:
            args_y = self._make_absolute(commands_y, args_y)

        if concat_groups:
            N = commands_y.size(0)
            # 必须使用 commands_y, 而不能用 tgt_commands
            # 因为 commands_y 可能会有多余的 EOS, EOS 是无法可视化的
            padding_mask_y = _get_padding_mask(commands_y, seq_dim=-1).bool()
            commands_y, args_y = commands_y[padding_mask_y].reshape(N, -1), args_y[padding_mask_y].reshape(N, -1, self.cfg.n_args)

        return commands_y, args_y, res

    def _make_valid(self, commands_y, args_y, visibility_y=None, PAD_VAL=0):
        if visibility_y is not None:
            S = commands_y.size(-1)
            commands_y[~visibility_y] = commands_y.new_tensor([SVGTensor.COMMANDS_SIMPLIFIED.index("m"), *[SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")] * (S - 1)])
            args_y[~visibility_y] = PAD_VAL

        mask = self.cmd_args_mask[commands_y.long()].bool()
        args_y[~mask] = PAD_VAL

        return commands_y, args_y

    def _make_absolute(self, commands_y, args_y):

        mask = self.cmd_args_mask[commands_y.long()].bool()
        args_y[mask] -= self.cfg.args_dim - 1

        real_commands = commands_y < SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")

        args_real_commands = args_y[real_commands]
        end_pos = args_real_commands[:-1, SVGTensor.IndexArgs.END_POS].cumsum(dim=0)

        args_real_commands[1:, SVGTensor.IndexArgs.CONTROL1] += end_pos
        args_real_commands[1:, SVGTensor.IndexArgs.CONTROL2] += end_pos
        args_real_commands[1:, SVGTensor.IndexArgs.END_POS] += end_pos

        args_y[real_commands] = args_real_commands

        _, args_y = self._make_valid(commands_y, args_y)

        return args_y