OmniSVG's picture
Upload 80 files
c1ce505 verified
import torch
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def linear(a, b, x, min_x, max_x):
"""
b ___________
/|
/ |
a _______/ |
| |
min_x max_x
"""
return a + min(max((x - min_x) / (max_x - min_x), 0), 1) * (b - a)
def batchify(data, device):
return (d.unsqueeze(0).to(device) for d in data)
def _make_seq_first(*args):
# N, G, S, ... -> S, G, N, ...
if len(args) == 1:
arg, = args
return arg.permute(2, 1, 0, *range(3, arg.dim())) if arg is not None else None
return (*(arg.permute(2, 1, 0, *range(3, arg.dim())) if arg is not None else None for arg in args),)
def _make_batch_first(*args):
# S, G, N, ... -> N, G, S, ...
if len(args) == 1:
arg, = args
return arg.permute(2, 1, 0, *range(3, arg.dim())) if arg is not None else None
return (*(arg.permute(2, 1, 0, *range(3, arg.dim())) if arg is not None else None for arg in args),)
def _pack_group_batch(*args):
# S, G, N, ... -> S, G * N, ...
if len(args) == 1:
arg, = args
return arg.reshape(arg.size(0), arg.size(1) * arg.size(2), *arg.shape[3:]) if arg is not None else None
return (*(arg.reshape(arg.size(0), arg.size(1) * arg.size(2), *arg.shape[3:]) if arg is not None else None for arg in args),)
def _unpack_group_batch(N, *args):
# S, G * N, ... -> S, G, N, ...
if len(args) == 1:
arg, = args
return arg.reshape(arg.size(0), -1, N, *arg.shape[2:]) if arg is not None else None
return (*(arg.reshape(arg.size(0), -1, N, *arg.shape[2:]) if arg is not None else None for arg in args),)