import torch import torch.nn as nn import torch.nn.functional as F from deepsvg.difflib.tensor import SVGTensor from .utils import _get_padding_mask, _get_visibility_mask from .config import _DefaultConfig class SVGLoss(nn.Module): def __init__(self, cfg: _DefaultConfig): super().__init__() self.cfg = cfg self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1 self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK) def forward(self, output, labels, weights): loss = 0. res = {} # VAE if self.cfg.use_vae: mu, logsigma = output["mu"], output["logsigma"] loss_kl = -0.5 * torch.mean(1 + logsigma - mu.pow(2) - torch.exp(logsigma)) loss_kl = loss_kl.clamp(min=weights["kl_tolerance"]) loss += weights["loss_kl_weight"] * loss_kl res["loss_kl"] = loss_kl # remove commitment loss # if self.cfg.use_vqvae: # vqvae_loss = output["vqvae_loss"].mean() # loss += vqvae_loss # res["vqvae_loss"] = vqvae_loss # Target & predictions # tgt_commands.shape [batch_size, max_num_groups, max_seq_len + 2] # tgt_args.shape [batch_size, max_num_groups, max_seq_len + 2, n_args] tgt_commands, tgt_args = output["tgt_commands"], output["tgt_args"] visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1) padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1) command_logits, args_logits = output["command_logits"], output["args_logits"] # 2-stage visibility if self.cfg.decode_stages == 2: visibility_logits = output["visibility_logits"] loss_visibility = F.cross_entropy(visibility_logits.reshape(-1, 2), visibility_mask.reshape(-1).long()) loss += weights["loss_visibility_weight"] * loss_visibility res["loss_visibility"] = loss_visibility # Commands & args if self.cfg.bin_targets: # 当使用 bin_targets 时,每个坐标是由 8 bit 代表的,所以会多一维 tgt_args = tgt_args[..., 1:, :, :] else: tgt_args = tgt_args[..., 1:, :] tgt_commands, padding_mask = tgt_commands[..., 1:], padding_mask[..., 1:] # mask.shape [batch_size, 8, 31, 11] # 对于预测正确的 command, mask 会乘上 True, cmd_args_mask 向量不会发生改变 # 对于预测错误的 command, mask 会乘上 False, 相当于把 cmd_args_mask 置为 0, 即不统计对应的 args # pred_cmd = torch.argmax(command_logits, dim = -1) # mask = self.cmd_args_mask[tgt_commands.long()] * (pred_cmd == tgt_commands).unsqueeze(-1) mask = self.cmd_args_mask[tgt_commands.long()] # padding_mask.shape [batch_size, num_path, num_commands + 1] # command_logits.shape [batch_size, num_path, num_commands + 1, n_commands] # command_logits[padding_mask.bool()].shape [-1, n_commands] # 目的是把 PAD 的位置筛掉 loss_cmd = F.cross_entropy(command_logits[padding_mask.bool()].reshape(-1, self.cfg.n_commands), tgt_commands[padding_mask.bool()].reshape(-1).long()) if self.cfg.abs_targets: # l2 loss performs better than l1 loss loss_args = nn.MSELoss()( args_logits[mask.bool()].reshape(-1), tgt_args[mask.bool()].reshape(-1).float() ) elif self.cfg.bin_targets: loss_args = nn.MSELoss()( args_logits[mask.bool()].reshape(-1), tgt_args[mask.bool()].reshape(-1).float() ) else: loss_args = F.cross_entropy( args_logits[mask.bool()].reshape(-1, self.args_dim), tgt_args[mask.bool()].reshape(-1).long() + 1 ) # shift due to -1 PAD_VAL loss += weights["loss_cmd_weight"] * loss_cmd \ + weights["loss_args_weight"] * loss_args res.update({ "loss": loss, "loss_cmd": loss_cmd, "loss_args": loss_args }) return res