import torch from torch import nn, einsum import torch.nn.functional as F import torch.distributed as distributed from torch.cuda.amp import autocast from einops import rearrange, repeat from contextlib import contextmanager def exists(val): return val is not None def default(val, d): return val if exists(val) else d def noop(*args, **kwargs): pass def l2norm(t): return F.normalize(t, p = 2, dim = -1) def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def uniform_init(*shape): t = torch.empty(shape) nn.init.kaiming_uniform_(t) return t def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): if temperature == 0: return t.argmax(dim = dim) return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) def laplace_smoothing(x, n_categories, eps = 1e-5): return (x + eps) / (x.sum() + n_categories * eps) def sample_vectors(samples, num): num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device = device)[:num] else: indices = torch.randint(0, num_samples, (num,), device = device) return samples[indices] def batched_sample_vectors(samples, num): return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim = 0)], dim = 0) def pad_shape(shape, size, dim = 0): return [size if i == dim else s for i, s in enumerate(shape)] def sample_multinomial(total_count, probs): device = probs.device probs = probs.cpu() total_count = probs.new_full((), total_count) remainder = probs.new_ones(()) sample = torch.empty_like(probs, dtype = torch.long) for i, p in enumerate(probs): s = torch.binomial(total_count, p / remainder) sample[i] = s total_count -= s remainder -= p return sample.to(device) def all_gather_sizes(x, dim): size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device) all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())] distributed.all_gather(all_sizes, size) return torch.stack(all_sizes) def all_gather_variably_sized(x, sizes, dim = 0): rank = distributed.get_rank() all_x = [] for i, size in enumerate(sizes): t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim)) distributed.broadcast(t, src = i, async_op = True) all_x.append(t) distributed.barrier() return all_x def sample_vectors_distributed(local_samples, num): local_samples = rearrange(local_samples, '1 ... -> ...') rank = distributed.get_rank() all_num_samples = all_gather_sizes(local_samples, dim = 0) if rank == 0: samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum()) else: samples_per_rank = torch.empty_like(all_num_samples) distributed.broadcast(samples_per_rank, src = 0) samples_per_rank = samples_per_rank.tolist() local_samples = sample_vectors(local_samples, samples_per_rank[rank]) all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0) out = torch.cat(all_samples, dim = 0) return rearrange(out, '... -> 1 ...') def batched_bincount(x, *, minlength): batch, dtype, device = x.shape[0], x.dtype, x.device target = torch.zeros(batch, minlength, dtype = dtype, device = device) values = torch.ones_like(x) target.scatter_add_(-1, x, values) return target def kmeans( samples, num_clusters, num_iters = 10, use_cosine_sim = False, sample_fn = batched_sample_vectors, all_reduce_fn = noop ): num_codebooks, dim, dtype, device = samples.shape[0], samples.shape[-1], samples.dtype, samples.device means = sample_fn(samples, num_clusters) for _ in range(num_iters): if use_cosine_sim: dists = samples @ rearrange(means, 'h n d -> h d n') else: dists = -torch.cdist(samples, means, p = 2) buckets = torch.argmax(dists, dim = -1) bins = batched_bincount(buckets, minlength = num_clusters) all_reduce_fn(bins) zero_mask = bins == 0 bins_min_clamped = bins.masked_fill(zero_mask, 1) new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype = dtype) new_means.scatter_add_(1, repeat(buckets, 'h n -> h n d', d = dim), samples) new_means = new_means / rearrange(bins_min_clamped, '... -> ... 1') all_reduce_fn(new_means) if use_cosine_sim: new_means = l2norm(new_means) means = torch.where( rearrange(zero_mask, '... -> ... 1'), means, new_means ) return means, bins def batched_embedding(indices, embeds): batch, dim = indices.shape[1], embeds.shape[-1] indices = repeat(indices, 'h b n -> h b n d', d = dim) embeds = repeat(embeds, 'h c d -> h b c d', b = batch) return embeds.gather(2, indices) # regularization losses def orthogonal_loss_fn(t): # eq (2) from https://arxiv.org/abs/2112.00384 h, n = t.shape[:2] normed_codes = l2norm(t) cosine_sim = einsum('h i d, h j d -> h i j', normed_codes, normed_codes) return (cosine_sim ** 2).sum() / (h * n ** 2) - (1 / n) # distance types class EuclideanCodebook(nn.Module): def __init__( self, dim, codebook_size, num_codebooks = 1, kmeans_init = False, kmeans_iters = 10, sync_kmeans = True, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0 ): super().__init__() self.decay = decay init_fn = uniform_init if not kmeans_init else torch.zeros embed = init_fn(num_codebooks, codebook_size, dim) self.codebook_size = codebook_size self.num_codebooks = num_codebooks self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.sample_codebook_temp = sample_codebook_temp assert not (use_ddp and num_codebooks > 1 and kmeans_init), 'kmeans init is not compatible with multiple codebooks in distributed environment for now' self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) self.register_buffer('embed_avg', embed.clone()) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans( data, self.codebook_size, self.kmeans_iters, sample_fn = self.sample_fn, all_reduce_fn = self.kmeans_all_reduce_fn ) self.embed.data.copy_(embed) self.embed_avg.data.copy_(embed.clone()) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace(self, batch_samples, batch_mask): batch_samples = l2norm(batch_samples) for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): if not torch.any(mask): continue sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') self.replace(batch_samples, batch_mask = expired_codes) @autocast(enabled = False) def forward(self, x): needs_codebook_dim = x.ndim < 4 x = x.float() if needs_codebook_dim: x = rearrange(x, '... -> 1 ...') shape, dtype = x.shape, x.dtype flatten = rearrange(x, 'h ... d -> h (...) d') self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() dist = -torch.cdist(flatten, embed, p = 2) embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = batched_embedding(embed_ind, self.embed) if self.training: cluster_size = embed_onehot.sum(dim = 1) self.all_reduce_fn(cluster_size) ema_inplace(self.cluster_size, cluster_size, self.decay) embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) self.all_reduce_fn(embed_sum.contiguous()) ema_inplace(self.embed_avg, embed_sum, self.decay) cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() embed_normalized = self.embed_avg / rearrange(cluster_size, '... -> ... 1') self.embed.data.copy_(embed_normalized) self.expire_codes_(x) if needs_codebook_dim: quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) return quantize, embed_ind class CosineSimCodebook(nn.Module): def __init__( self, dim, codebook_size, num_codebooks = 1, kmeans_init = False, kmeans_iters = 10, sync_kmeans = True, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0. ): super().__init__() self.decay = decay if not kmeans_init: embed = l2norm(uniform_init(num_codebooks, codebook_size, dim)) else: embed = torch.zeros(num_codebooks, codebook_size, dim) self.codebook_size = codebook_size self.num_codebooks = num_codebooks self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.sample_codebook_temp = sample_codebook_temp self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans( data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True, sample_fn = self.sample_fn, all_reduce_fn = self.kmeans_all_reduce_fn ) self.embed.data.copy_(embed) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace(self, batch_samples, batch_mask): batch_samples = l2norm(batch_samples) for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): if not torch.any(mask): continue sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') self.replace(batch_samples, batch_mask = expired_codes) @autocast(enabled = False) def forward(self, x): needs_codebook_dim = x.ndim < 4 x = x.float() if needs_codebook_dim: x = rearrange(x, '... -> 1 ...') shape, dtype = x.shape, x.dtype flatten = rearrange(x, 'h ... d -> h (...) d') flatten = l2norm(flatten) self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() embed = l2norm(embed) dist = einsum('h n d, h c d -> h n c', flatten, embed) embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = batched_embedding(embed_ind, self.embed) if self.training: bins = embed_onehot.sum(dim = 1) self.all_reduce_fn(bins) ema_inplace(self.cluster_size, bins, self.decay) zero_mask = (bins == 0) bins = bins.masked_fill(zero_mask, 1.) embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) self.all_reduce_fn(embed_sum) embed_normalized = embed_sum / rearrange(bins, '... -> ... 1') embed_normalized = l2norm(embed_normalized) embed_normalized = torch.where( rearrange(zero_mask, '... -> ... 1'), embed, embed_normalized ) ema_inplace(self.embed, embed_normalized, self.decay) self.expire_codes_(x) if needs_codebook_dim: quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) return quantize, embed_ind # main class class VectorQuantize(nn.Module): def __init__( self, dim, codebook_size, codebook_dim = None, heads = 1, separate_codebook_per_head = False, decay = 0.8, eps = 1e-5, kmeans_init = False, kmeans_iters = 10, sync_kmeans = True, use_cosine_sim = False, threshold_ema_dead_code = 0, channel_last = True, accept_image_fmap = False, commitment_weight = 1., orthogonal_reg_weight = 0., orthogonal_reg_active_codes_only = False, orthogonal_reg_max_codes = None, sample_codebook_temp = 0., sync_codebook = False ): super().__init__() self.heads = heads self.separate_codebook_per_head = separate_codebook_per_head codebook_dim = default(codebook_dim, dim) codebook_input_dim = codebook_dim * heads requires_projection = codebook_input_dim != dim self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity() self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity() self.eps = eps self.commitment_weight = commitment_weight has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 self.orthogonal_reg_weight = orthogonal_reg_weight self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only self.orthogonal_reg_max_codes = orthogonal_reg_max_codes codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook self._codebook = codebook_class( dim = codebook_dim, num_codebooks = heads if separate_codebook_per_head else 1, codebook_size = codebook_size, kmeans_init = kmeans_init, kmeans_iters = kmeans_iters, sync_kmeans = sync_kmeans, decay = decay, eps = eps, threshold_ema_dead_code = threshold_ema_dead_code, use_ddp = sync_codebook, learnable_codebook = has_codebook_orthogonal_loss, sample_codebook_temp = sample_codebook_temp ) self.codebook_size = codebook_size self.accept_image_fmap = accept_image_fmap self.channel_last = channel_last @property def codebook(self): codebook = self._codebook.embed if self.separate_codebook_per_head: return codebook return rearrange(codebook, '1 ... -> ...') def forward( self, x, mask = None ): shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size need_transpose = not self.channel_last and not self.accept_image_fmap if self.accept_image_fmap: height, width = x.shape[-2:] x = rearrange(x, 'b c h w -> b (h w) c') if need_transpose: x = rearrange(x, 'b d n -> b n d') x = self.project_in(x) if is_multiheaded: ein_rhs_eq = 'h b n d' if self.separate_codebook_per_head else '1 (b h) n d' x = rearrange(x, f'b n (h d) -> {ein_rhs_eq}', h = heads) quantize, embed_ind = self._codebook(x) if self.training: quantize = x + (quantize - x).detach() loss = torch.tensor([0.], device = device, requires_grad = self.training) if self.training: if self.commitment_weight > 0: detached_quantize = quantize.detach() if exists(mask): # with variable lengthed sequences commit_loss = F.mse_loss(detached_quantize, x, reduction = 'none') if is_multiheaded: mask = repeat(mask, 'b n -> c (b h) n', c = commit_loss.shape[0], h = commit_loss.shape[1] // mask.shape[0]) commit_loss = commit_loss[mask].mean() else: commit_loss = F.mse_loss(detached_quantize, x) loss = loss + commit_loss * self.commitment_weight if self.orthogonal_reg_weight > 0: codebook = self._codebook.embed if self.orthogonal_reg_active_codes_only: # only calculate orthogonal loss for the activated codes for this batch unique_code_ids = torch.unique(embed_ind) codebook = codebook[unique_code_ids] num_codes = codebook.shape[0] if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] codebook = codebook[rand_ids] orthogonal_reg_loss = orthogonal_loss_fn(codebook) loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight if is_multiheaded: if self.separate_codebook_per_head: quantize = rearrange(quantize, 'h b n d -> b n (h d)', h = heads) embed_ind = rearrange(embed_ind, 'h b n -> b n h', h = heads) else: quantize = rearrange(quantize, '1 (b h) n d -> b n (h d)', h = heads) embed_ind = rearrange(embed_ind, '1 (b h) n -> b n h', h = heads) quantize = self.project_out(quantize) if need_transpose: quantize = rearrange(quantize, 'b n d -> b d n') if self.accept_image_fmap: quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width) return quantize, embed_ind, loss