from deepsvg.config import _Config from deepsvg.difflib.tensor import SVGTensor from deepsvg.svglib.svg import SVG from deepsvg.svglib.geom import Point import math import torch import torch.utils.data import random from typing import List, Union import pandas as pd import os import pickle from sklearn.model_selection import train_test_split Num = Union[int, float] class SVGTensorDataset(torch.utils.data.Dataset): def __init__(self, df, data_dir, model_args, max_num_groups, max_seq_len, max_total_len=None, PAD_VAL=0): self.data_dir = data_dir self.MAX_NUM_GROUPS = max_num_groups self.MAX_SEQ_LEN = max_seq_len self.MAX_TOTAL_LEN = max_total_len if max_total_len is None: self.MAX_TOTAL_LEN = max_num_groups * max_seq_len # if df is None: # df = pd.read_csv(meta_filepath) # if len(df) > 0: # if filter_uni is not None: # df = df[df.uni.isin(filter_uni)] # if filter_platform is not None: # df = df[df.platform.isin(filter_platform)] # if filter_category is not None: # df = df[df.category.isin(filter_category)] # df = df[(df.nb_groups <= max_num_groups) & (df.max_len_group <= max_seq_len)] # if max_total_len is not None: # df = df[df.total_len <= max_total_len] # self.df = df.sample(frac=train_ratio) if train_ratio < 1.0 else df self.df = df self.model_args = model_args self.PAD_VAL = PAD_VAL self.nb_augmentations = len(self._load_tensor(self.idx_to_id(0))[0]) def search_name(self, name): return self.df[self.df.commonName.str.contains(name)] def _filter_categories(self, filter_category): self.df = self.df[self.df.category.isin(filter_category)] @staticmethod def _uni_to_label(uni): if 48 <= uni <= 57: return uni - 48 elif 65 <= uni <= 90: return uni - 65 + 10 return uni - 97 + 36 @staticmethod def _label_to_uni(label_id): if 0 <= label_id <= 9: return label_id + 48 elif 10 <= label_id <= 35: return label_id + 65 - 10 return label_id + 97 - 36 @staticmethod def _category_to_label(category): categories = ['characters', 'free-icons', 'logos', 'alphabet', 'animals', 'arrows', 'astrology', 'baby', 'beauty', 'business', 'cinema', 'city', 'clothing', 'computer-hardware', 'crime', 'cultures', 'data', 'diy', 'drinks', 'ecommerce', 'editing', 'files', 'finance', 'folders', 'food', 'gaming', 'hands', 'healthcare', 'holidays', 'household', 'industry', 'maps', 'media-controls', 'messaging', 'military', 'mobile', 'music', 'nature', 'network', 'photo-video', 'plants', 'printing', 'profile', 'programming', 'science', 'security', 'shopping', 'social-networks', 'sports', 'time-and-date', 'transport', 'travel', 'user-interface', 'users', 'weather', 'flags', 'emoji', 'men', 'women'] return categories.index(category) def get_label(self, idx=0, entry=None): if entry is None: entry = self.df.iloc[idx] if "uni" in self.df.columns: # Font dataset label = self._uni_to_label(entry.uni) return torch.tensor(label) elif "category" in self.df.columns: # Icons dataset label = self._category_to_label(entry.category) return torch.tensor(label) return None def idx_to_id(self, idx): return self.df.iloc[idx].id def entry_from_id(self, id): return self.df[self.df.id == str(id)].iloc[0] def _load_tensor(self, icon_id): with open(os.path.join(self.data_dir, f"{icon_id}.pkl"), "rb") as f: data = pickle.load(f) return data["tensors"], data["fillings"] def __len__(self): return len(self.df) * self.nb_augmentations def random_icon(self): return self[random.randrange(0, len(self))] def random_id(self): idx = random.randrange(0, len(self)) % len(self.df) return self.idx_to_id(idx) def random_id_by_uni(self, uni): df = self.df[self.df.uni == uni] return df.id.sample().iloc[0] def __getitem__(self, idx): return self.get(idx, self.model_args) @staticmethod def _augment(svg, mean=False): dx, dy = (0, 0) if mean else (5 * random.random() - 2.5, 5 * random.random() - 2.5) factor = 0.7 if mean else 0.2 * random.random() + 0.6 return svg.zoom(factor).translate(Point(dx, dy)) @staticmethod def simplify(svg, normalize=True): svg.canonicalize(normalize=normalize) svg = svg.simplify_heuristic() return svg.normalize() @staticmethod def preprocess(svg, augment=True, numericalize=True, mean=False): if augment: svg = SVGTensorDataset._augment(svg, mean=mean) if numericalize: return svg.numericalize(256) return svg def get(self, idx=0, model_args=None, random_aug=True, id=None, svg: SVG=None): if id is None: idx = idx % len(self.df) id = self.idx_to_id(idx) if svg is None: tensors, fillings = self._load_tensor(id) t_sep = random.choice(tensors) if random_aug else tensors[0] else: t_sep, fillings = svg.to_tensor(concat_groups=False, PAD_VAL=self.PAD_VAL), svg.to_fillings() label = self.get_label(idx) return self.get_data(t_sep, fillings, model_args=model_args, label=label) def get_data(self, t_sep, fillings, model_args=None, label=None): res = {} if model_args is None: model_args = self.model_args pad_len = max(self.MAX_NUM_GROUPS - len(t_sep), 0) t_sep.extend([torch.empty(0, 14)] * pad_len) fillings.extend([0] * pad_len) t_grouped = [SVGTensor.from_data(torch.cat(t_sep, dim=0), PAD_VAL=self.PAD_VAL).add_eos().add_sos().pad( seq_len=self.MAX_TOTAL_LEN + 2)] t_sep = [SVGTensor.from_data(t, PAD_VAL=self.PAD_VAL, filling=f).add_eos().add_sos().pad(seq_len=self.MAX_SEQ_LEN + 2) for t, f in zip(t_sep, fillings)] for arg in set(model_args): if "_grouped" in arg: arg_ = arg.split("_grouped")[0] t_list = t_grouped else: arg_ = arg t_list = t_sep if arg_ == "tensor": res[arg] = t_list if arg_ == "commands": res[arg] = torch.stack([t.cmds() for t in t_list]) if arg_ == "args_rel": res[arg] = torch.stack([t.get_relative_args() for t in t_list]) if arg_ == "args": res[arg] = torch.stack([t.args() for t in t_list]) if "filling" in model_args: res["filling"] = torch.stack([torch.tensor(t.filling) for t in t_sep]).unsqueeze(-1) if "label" in model_args: res["label"] = label return res class SVGFinetuneDataset(torch.utils.data.Dataset): """ Wrapper around SVGTensorDataset intended to finetune a model on a list of additional SVGs. Randomly samples fraction `frac` of SVGs to be finetuned and `1-frac` of data from the original SVGTensorDataset. """ def __init__(self, original_dataset: SVGTensorDataset, svg_list: List[SVG], frac=0.5, nb_augmentations=20): self.original_dataset = original_dataset self.svg_list = svg_list self.frac = frac self.nb_augmentations = nb_augmentations def __len__(self): return math.ceil(len(self.svg_list) / self.frac) * self.nb_augmentations def __getitem__(self, idx): i = idx % math.ceil(len(self.svg_list) / self.frac) if i < len(self.svg_list): return self.original_dataset.get(svg=self.svg_list[i].copy()) else: return self.original_dataset.random_icon() def load_dataset(cfg: _Config): df = pd.read_csv(cfg.meta_filepath) if len(df) > 0: if cfg.filter_uni is not None: df = df[df.uni.isin(cfg.filter_uni)] if cfg.filter_platform is not None: df = df[df.platform.isin(cfg.filter_platform)] if cfg.filter_category is not None: df = df[df.category.isin(cfg.filter_category)] df = df[(df.nb_groups <= cfg.max_num_groups) & (df.max_len_group <= cfg.max_seq_len)] if cfg.max_total_len is not None: df = df[df.total_len <= cfg.max_total_len] df = df.sample(frac=cfg.dataset_ratio) if cfg.dataset_ratio < 1.0 else df train_df, valid_df = train_test_split(df, train_size=cfg.train_ratio) train_dataset = SVGTensorDataset(train_df, cfg.data_dir, cfg.model_args, cfg.max_num_groups, cfg.max_seq_len, cfg.max_total_len) valid_dataset = SVGTensorDataset(valid_df, cfg.data_dir, cfg.model_args, cfg.max_num_groups, cfg.max_seq_len, cfg.max_total_len) print(f"Number of train SVGs: {len(train_df)}") print(f"First SVG in train: {train_df.iloc[0]['id']} - {train_df.iloc[0]['category']} - {train_df.iloc[0]['subcategory']}") print(f"Number of valid SVGs: {len(valid_df)}") print(f"First SVG in train: {valid_df.iloc[0]['id']} - {valid_df.iloc[0]['category']} - {valid_df.iloc[0]['subcategory']}") return train_dataset, valid_dataset