#This code is from: https://huggingface.co/spaces/diffusers/controlnet-3d-pose import gradio as gr from PIL import Image, ImageFilter from io import BytesIO import base64 canvas_html = '
' load_js = """ async () => { const url = "https://huggingface.co/datasets/mishig/gradio-components/raw/main/mannequinAll.js" fetch(url) .then(res => res.text()) .then(text => { const script = document.createElement('script'); script.type = "module" script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); document.head.appendChild(script); }); } """ get_js_image = """ async (canvas, prompt) => { const poseMakerEl = document.querySelector("pose-maker"); const imgBase64 = poseMakerEl.captureScreenshotDepthMap(); return [imgBase64, prompt] } """ js_change_rotation_axis = """ async (axis) => { const poseMakerEl = document.querySelector("pose-maker"); poseMakerEl.changeRotationAxis(axis); } """ js_pose_template = """ async (pose) => { const poseMakerEl = document.querySelector("pose-maker"); poseMakerEl.setPose(pose); } """ def generate_images(canvas): base64_img = canvas image_data = base64.b64decode(base64_img.split(',')[1]) input_img = Image.open(BytesIO(image_data)).convert( 'RGB').resize((512, 512)) input_img = input_img.filter(ImageFilter.GaussianBlur(radius=2)) input_img = get_canny_filter(input_img) return input_image def placeholder_fn(axis): pass with gr.Blocks() as b: with gr.Row(): canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True) with gr.Column(): rotation_axis = gr.Radio(choices=["x", "y", "z"], value="x", label="Joint rotation axis") pose_template = gr.Radio(choices=["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template") run_button = gr.Button("Generate") rotation_axis.change(fn=placeholder_fn, inputs=[rotation_axis], outputs=[], queue=False, _js=js_change_rotation_axis) pose_template.change(fn=placeholder_fn, inputs=[pose_template], outputs=[], queue=False, _js=js_pose_template) run_button.click(fn=generate_images, inputs=[canvas], outputs=[gr.Image()], _js=get_js_image) b.load(None,None,None,_js=load_js) b.launch()