Omnitopia's picture
Upload folder using huggingface_hub
658460c verified
from __future__ import annotations
import ast
import builtins
import contextlib
import itertools
import os
import platform
import sys
import textwrap
from types import ModuleType
from typing import TYPE_CHECKING, Any, Generator, Iterable, NamedTuple, cast
from IPython.extensions.deduperreload.deduperreload_patching import (
DeduperReloaderPatchingMixin,
)
if TYPE_CHECKING:
TDefinitionAst = (
ast.FunctionDef
| ast.AsyncFunctionDef
| ast.Import
| ast.ImportFrom
| ast.Assign
| ast.AnnAssign
)
def get_module_file_name(module: ModuleType | str) -> str:
"""Returns the module's file path, or the empty string if it's inaccessible"""
if (mod := sys.modules.get(module) if isinstance(module, str) else module) is None:
return ""
return getattr(mod, "__file__", "") or ""
def compare_ast(node1: ast.AST | list[ast.AST], node2: ast.AST | list[ast.AST]) -> bool:
"""Checks if node1 and node2 have identical AST structure/values, apart from some attributes"""
if type(node1) is not type(node2):
return False
if isinstance(node1, ast.AST):
for k, v in node1.__dict__.items():
if k in (
"lineno",
"end_lineno",
"col_offset",
"end_col_offset",
"ctx",
"parent",
):
continue
if not hasattr(node2, k) or not compare_ast(v, getattr(node2, k)):
return False
return True
elif isinstance(node1, list) and isinstance( # type:ignore [redundant-expr]
node2, list
):
return len(node1) == len(node2) and all(
compare_ast(n1, n2) for n1, n2 in zip(node1, node2)
)
else:
return node1 == node2
class DependencyNode(NamedTuple):
"""
Each node represents a function.
qualified_name: string which represents the namespace/name of the function
abstract_syntax_tree: subtree of the overall module which corresponds to this function
qualified_name is of the structure: (namespace1, namespace2, ..., name)
For example, foo() in the following would be represented as (A, B, foo):
class A:
class B:
def foo():
pass
"""
qualified_name: tuple[str, ...]
abstract_syntax_tree: ast.AST
class GatherResult(NamedTuple):
import_defs: list[tuple[tuple[str, ...], ast.Import | ast.ImportFrom]] = []
assign_defs: list[tuple[tuple[str, ...], ast.Assign | ast.AnnAssign]] = []
function_defs: list[
tuple[tuple[str, ...], ast.FunctionDef | ast.AsyncFunctionDef]
] = []
classes: dict[str, ast.ClassDef] = {}
unfixable: list[ast.AST] = []
@classmethod
def create(cls) -> GatherResult:
return cls([], [], [], {}, [])
def all_defs(self) -> Iterable[tuple[tuple[str, ...], TDefinitionAst]]:
return itertools.chain(self.import_defs, self.assign_defs, self.function_defs)
def inplace_merge(self, other: GatherResult) -> None:
self.import_defs.extend(other.import_defs)
self.assign_defs.extend(other.assign_defs)
self.function_defs.extend(other.function_defs)
self.classes.update(other.classes)
self.unfixable.extend(other.unfixable)
class ConstexprDetector(ast.NodeVisitor):
def __init__(self) -> None:
self.is_constexpr = True
self._allow_builtins_exceptions = True
@contextlib.contextmanager
def disallow_builtins_exceptions(self) -> Generator[None, None, None]:
prev_allow = self._allow_builtins_exceptions
self._allow_builtins_exceptions = False
try:
yield
finally:
self._allow_builtins_exceptions = prev_allow
def visit_Attribute(self, node: ast.Attribute) -> None:
with self.disallow_builtins_exceptions():
self.visit(node.value)
def visit_Name(self, node: ast.Name) -> None:
if self._allow_builtins_exceptions and hasattr(builtins, node.id):
return
self.is_constexpr = False
def visit(self, node: ast.AST) -> None:
if not self.is_constexpr:
# can short-circuit if we've already detected that it's not a constexpr
return
super().visit(node)
def __call__(self, node: ast.AST) -> bool:
self.is_constexpr = True
self.visit(node)
return self.is_constexpr
class AutoreloadTree:
"""
Recursive data structure to keep track of reloadable functions/methods. Each object corresponds to a specific scope level.
children: classes inside given scope, maps class name to autoreload tree for that class's scope
funcs_to_autoreload: list of function names that can be autoreloaded in given scope.
new_nested_classes: Classes getting added in new autoreload cycle
"""
def __init__(self) -> None:
self.children: dict[str, AutoreloadTree] = {}
self.defs_to_reload: list[tuple[tuple[str, ...], ast.AST]] = []
self.defs_to_delete: set[str] = set()
self.new_nested_classes: dict[str, ast.AST] = {}
def traverse_prefixes(self, prefixes: list[str]) -> AutoreloadTree:
"""
Return ref to the AutoreloadTree at the namespace specified by prefixes
"""
cur = self
for prefix in prefixes:
if prefix not in cur.children:
cur.children[prefix] = AutoreloadTree()
cur = cur.children[prefix]
return cur
class DeduperReloader(DeduperReloaderPatchingMixin):
"""
This version of autoreload detects when we can leverage targeted recompilation of a subset of a module and patching
existing function/method objects to reflect these changes.
Detects what functions/methods can be reloaded by recursively comparing the old/new AST of module-level classes,
module-level classes' methods, recursing through nested classes' methods. If other changes are made, original
autoreload algorithm is called directly.
"""
def __init__(self) -> None:
self._to_autoreload: AutoreloadTree = AutoreloadTree()
self.source_by_modname: dict[str, str] = {}
self.dependency_graph: dict[tuple[str, ...], list[DependencyNode]] = {}
self._enabled = True
@property
def enabled(self) -> bool:
return self._enabled and platform.python_implementation() == "CPython"
@enabled.setter
def enabled(self, value: bool) -> None:
self._enabled = value
def update_sources(self) -> None:
"""
Update dictionary source_by_modname with current modules' source codes.
"""
if not self.enabled:
return
for new_modname in sys.modules.keys() - self.source_by_modname.keys():
new_module = sys.modules[new_modname]
if (
(fname := get_module_file_name(new_module))
is None # type:ignore [redundant-expr]
or "site-packages" in fname
or "dist-packages" in fname
or not os.access(fname, os.R_OK)
):
self.source_by_modname[new_modname] = ""
continue
with open(fname, "r") as f:
try:
self.source_by_modname[new_modname] = f.read()
except Exception:
self.source_by_modname[new_modname] = ""
constexpr_detector = ConstexprDetector()
@staticmethod
def is_enum_subclass(node: ast.Module | ast.ClassDef) -> bool:
if isinstance(node, ast.Module):
return False
for base in node.bases:
if isinstance(base, ast.Name) and base.id == "Enum":
return True
elif (
isinstance(base, ast.Attribute)
and base.attr == "Enum"
and isinstance(base.value, ast.Name)
and base.value.id == "enum"
):
return True
return False
@classmethod
def is_constexpr_assign(
cls, node: ast.AST, parent_node: ast.Module | ast.ClassDef
) -> bool:
if not isinstance(node, (ast.Assign, ast.AnnAssign)) or node.value is None:
return False
if cls.is_enum_subclass(parent_node):
return False
for target in node.targets if isinstance(node, ast.Assign) else [node.target]:
if not isinstance(target, ast.Name):
return False
return cls.constexpr_detector(node.value)
@classmethod
def _gather_children(
cls, body: list[ast.stmt], parent_node: ast.Module | ast.ClassDef
) -> GatherResult:
"""
Given list of ast elements, return:
1. dict mapping function names to their ASTs.
2. dict mapping class names to their ASTs.
3. list of any other ASTs.
"""
result = GatherResult.create()
for ast_node in body:
ast_elt: ast.expr | ast.stmt = ast_node
while isinstance(ast_elt, ast.Expr):
ast_elt = ast_elt.value
if isinstance(ast_elt, (ast.FunctionDef, ast.AsyncFunctionDef)):
result.function_defs.append(((ast_elt.name,), ast_elt))
elif isinstance(ast_elt, (ast.Import, ast.ImportFrom)):
result.import_defs.append(
(tuple(name.asname or name.name for name in ast_elt.names), ast_elt)
)
elif isinstance(ast_elt, ast.ClassDef):
result.classes[ast_elt.name] = ast_elt
elif isinstance(ast_elt, ast.If):
result.unfixable.append(ast_elt.test)
result.inplace_merge(cls._gather_children(ast_elt.body, parent_node))
result.inplace_merge(cls._gather_children(ast_elt.orelse, parent_node))
elif isinstance(ast_elt, (ast.AsyncWith, ast.With)):
result.unfixable.extend(ast_elt.items)
result.inplace_merge(cls._gather_children(ast_elt.body, parent_node))
elif isinstance(ast_elt, ast.Try):
result.inplace_merge(cls._gather_children(ast_elt.body, parent_node))
result.inplace_merge(cls._gather_children(ast_elt.orelse, parent_node))
result.inplace_merge(
cls._gather_children(ast_elt.finalbody, parent_node)
)
for handler in ast_elt.handlers:
if handler.type is not None:
result.unfixable.append(handler.type)
result.inplace_merge(
cls._gather_children(handler.body, parent_node)
)
elif not isinstance(ast_elt, (ast.Ellipsis, ast.Pass)):
if cls.is_constexpr_assign(ast_elt, parent_node):
assert isinstance(ast_elt, (ast.Assign, ast.AnnAssign))
targets = (
ast_elt.targets
if isinstance(ast_elt, ast.Assign)
else [ast_elt.target]
)
result.assign_defs.append(
(
tuple(cast(ast.Name, target).id for target in targets),
ast_elt,
)
)
else:
result.unfixable.append(ast_elt)
return result
def detect_autoreload(
self,
old_node: ast.Module | ast.ClassDef,
new_node: ast.Module | ast.ClassDef,
prefixes: list[str] | None = None,
) -> bool:
"""
Returns
-------
`True` if we can run our targeted autoreload algorithm safely.
`False` if we should instead use IPython's original autoreload implementation.
"""
if not self.enabled:
return False
prefixes = prefixes or []
old_result = self._gather_children(old_node.body, old_node)
new_result = self._gather_children(new_node.body, new_node)
old_defs_by_name: dict[str, ast.AST] = {
name: ast_def for names, ast_def in old_result.all_defs() for name in names
}
new_defs_by_name: dict[str, ast.AST] = {
name: ast_def for names, ast_def in new_result.all_defs() for name in names
}
if not compare_ast(old_result.unfixable, new_result.unfixable):
return False
cur = self._to_autoreload.traverse_prefixes(prefixes)
for names, new_ast_def in new_result.all_defs():
names_to_reload = []
for name in names:
if new_defs_by_name[name] is not new_ast_def:
continue
if name not in old_defs_by_name or not compare_ast(
new_ast_def, old_defs_by_name[name]
):
names_to_reload.append(name)
if names_to_reload:
cur.defs_to_reload.append((tuple(names), new_ast_def))
cur.defs_to_delete |= set(old_defs_by_name.keys()) - set(
new_defs_by_name.keys()
)
for name, new_ast_def_class in new_result.classes.items():
if name not in old_result.classes:
cur.new_nested_classes[name] = new_ast_def_class
elif not compare_ast(
new_ast_def_class, old_result.classes[name]
) and not self.detect_autoreload(
old_result.classes[name], new_ast_def_class, prefixes + [name]
):
return False
return True
def _check_dependents(self) -> bool:
"""
If a decorator function is modified, we should similarly reload the functions which are decorated by this
decorator. Iterate through the Dependency Graph to find such cases in the given AutoreloadTree.
"""
for node in self._check_dependents_inner():
self._add_node_to_autoreload_tree(node)
return True
def _add_node_to_autoreload_tree(self, node: DependencyNode) -> None:
"""
Given a node of the dependency graph, add decorator dependencies to the autoreload tree.
"""
if len(node.qualified_name) == 0:
return
cur = self._to_autoreload.traverse_prefixes(list(node.qualified_name[:-1]))
if node.abstract_syntax_tree is not None:
cur.defs_to_reload.append(
((node.qualified_name[-1],), node.abstract_syntax_tree)
)
def _check_dependents_inner(
self, prefixes: list[str] | None = None
) -> list[DependencyNode]:
prefixes = prefixes or []
cur = self._to_autoreload.traverse_prefixes(prefixes)
ans = []
for (func_name, *_), _ in cur.defs_to_reload:
node = tuple(prefixes + [func_name])
ans.extend(self._gen_dependents(node))
for class_name in cur.new_nested_classes:
ans.extend(self._check_dependents_inner(prefixes + [class_name]))
return ans
def _gen_dependents(self, qualname: tuple[str, ...]) -> list[DependencyNode]:
ans = []
if qualname not in self.dependency_graph:
return []
for elt in self.dependency_graph[qualname]:
ans.extend(self._gen_dependents(elt.qualified_name))
ans.append(elt)
return ans
def _patch_namespace_inner(
self, ns: ModuleType | type, prefixes: list[str] | None = None
) -> bool:
"""
This function patches module functions and methods. Specifically, only objects with their name in
self.to_autoreload will be considered for patching. If an object has been marked to be autoreloaded,
new_source_code gets executed in the old version's global environment. Then, replace the old function's
attributes with the new function's attributes.
"""
prefixes = prefixes or []
cur = self._to_autoreload.traverse_prefixes(prefixes)
namespace_to_check = ns
for prefix in prefixes:
namespace_to_check = namespace_to_check.__dict__[prefix]
for names, new_ast_def in cur.defs_to_reload:
local_env: dict[str, Any] = {}
if (
isinstance(new_ast_def, (ast.FunctionDef, ast.AsyncFunctionDef))
and (name := names[0]) in namespace_to_check.__dict__
):
assert len(names) == 1
to_patch_to = namespace_to_check.__dict__[name]
if isinstance(to_patch_to, (staticmethod, classmethod)):
to_patch_to = to_patch_to.__func__
# exec new source code using old function's (obj) globals environment.
func_code = textwrap.dedent(ast.unparse(new_ast_def))
if is_method := (len(prefixes) > 0):
func_code = "class __autoreload_class__:\n" + textwrap.indent(
func_code, " "
)
global_env = namespace_to_check.__dict__
if hasattr(to_patch_to, "__globals__"):
global_env = to_patch_to.__globals__
elif isinstance(to_patch_to, property):
if to_patch_to.fget is not None:
global_env = to_patch_to.fget.__globals__
elif to_patch_to.fset is not None:
global_env = to_patch_to.fset.__globals__
elif to_patch_to.fdel is not None:
global_env = to_patch_to.fdel.__globals__
if not isinstance(global_env, dict):
global_env = dict(global_env)
exec(func_code, global_env, local_env) # type: ignore[arg-type]
# local_env contains the function exec'd from new version of function
if is_method:
to_patch_from = getattr(local_env["__autoreload_class__"], name)
else:
to_patch_from = local_env[name]
if isinstance(to_patch_from, (staticmethod, classmethod)):
to_patch_from = to_patch_from.__func__
if isinstance(to_patch_to, property) and isinstance(
to_patch_from, property
):
for attr in ("fget", "fset", "fdel"):
if (
getattr(to_patch_to, attr) is None
or getattr(to_patch_from, attr) is None
):
self.try_patch_attr(to_patch_to, to_patch_from, attr)
else:
self.patch_function(
getattr(to_patch_to, attr),
getattr(to_patch_from, attr),
is_method,
)
elif not isinstance(to_patch_to, property) and not isinstance(
to_patch_from, property
):
self.patch_function(to_patch_to, to_patch_from, is_method)
else:
raise ValueError(
"adding or removing property decorations not supported"
)
else:
exec(
ast.unparse(new_ast_def),
ns.__dict__ | namespace_to_check.__dict__,
local_env,
)
for name in names:
setattr(namespace_to_check, name, local_env[name])
cur.defs_to_reload.clear()
for name in cur.defs_to_delete:
try:
delattr(namespace_to_check, name)
except (AttributeError, TypeError, ValueError):
# give up on deleting the attribute, let the stale one dangle
pass
cur.defs_to_delete.clear()
for class_name, class_ast_node in cur.new_nested_classes.items():
local_env_class: dict[str, Any] = {}
exec(
ast.unparse(class_ast_node),
ns.__dict__ | namespace_to_check.__dict__,
local_env_class,
)
setattr(namespace_to_check, class_name, local_env_class[class_name])
cur.new_nested_classes.clear()
for class_name in cur.children.keys():
if not self._patch_namespace(ns, prefixes + [class_name]):
return False
cur.children.clear()
return True
def _patch_namespace(
self, ns: ModuleType | type, prefixes: list[str] | None = None
) -> bool:
"""
Wrapper for patching all elements in a namespace as specified by the to_autoreload member variable.
Returns `true` if patching was successful, and `false` if unsuccessful.
"""
try:
return self._patch_namespace_inner(ns, prefixes=prefixes)
except Exception:
return False
def maybe_reload_module(self, module: ModuleType) -> bool:
"""
Uses Deduperreload to try to update a module.
Returns `true` on success and `false` on failure.
"""
if not self.enabled:
return False
if not (modname := getattr(module, "__name__", None)):
return False
if (fname := get_module_file_name(module)) is None:
return False
with open(fname, "r") as f:
new_source_code = f.read()
patched_flag = False
if old_source_code := self.source_by_modname.get(modname):
# get old/new module ast
try:
old_module_ast = ast.parse(old_source_code)
new_module_ast = ast.parse(new_source_code)
except Exception:
return False
# detect if we are able to use our autoreload algorithm
ctx = contextlib.suppress()
with ctx:
self._build_dependency_graph(new_module_ast)
if (
self.detect_autoreload(old_module_ast, new_module_ast)
and self._check_dependents()
and self._patch_namespace(module)
):
patched_flag = True
self.source_by_modname[modname] = new_source_code
self._to_autoreload = AutoreloadTree()
return patched_flag
def _separate_name(
self,
decorator: ast.Attribute | ast.Name | ast.Call | ast.expr,
accept_calls: bool,
) -> list[str] | None:
"""
Generates a qualified name for a given decorator by finding its relative namespace.
"""
if isinstance(decorator, ast.Name):
return [decorator.id]
elif isinstance(decorator, ast.Call):
if accept_calls:
return self._separate_name(decorator.func, False)
else:
return None
if not isinstance(decorator, ast.Attribute):
return None
if pref := self._separate_name(decorator.value, False):
return pref + [decorator.attr]
else:
return None
def _gather_dependents(
self, body: list[ast.stmt], body_prefixes: list[str] | None = None
) -> bool:
body_prefixes = body_prefixes or []
for ast_node in body:
ast_elt: ast.expr | ast.stmt = ast_node
if isinstance(ast_elt, ast.ClassDef):
self._gather_dependents(ast_elt.body, body_prefixes + [ast_elt.name])
continue
if not isinstance(ast_elt, (ast.FunctionDef, ast.AsyncFunctionDef)):
continue
qualified_name = tuple(body_prefixes + [ast_elt.name])
cur_dependency_node = DependencyNode(qualified_name, ast_elt)
for decorator in ast_elt.decorator_list:
decorator_path = self._separate_name(decorator, True)
if not decorator_path:
continue
decorator_path_tuple = tuple(decorator_path)
self.dependency_graph.setdefault(decorator_path_tuple, []).append(
cur_dependency_node
)
return True
def _build_dependency_graph(self, new_ast: ast.Module | ast.ClassDef) -> bool:
"""
Wrapper function for generating dependency graph given some AST.
Returns `true` on success. Returns `false` on failure.
Currently, only returns `true` as we do not block on failure to build this graph.
"""
return self._gather_dependents(new_ast.body)