Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple | |
| from collections import namedtuple | |
| import copy | |
| import torch | |
| from torch.optim import AdamW | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample, \ | |
| dqfd_nstep_td_error, dqfd_nstep_td_data | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from .dqn import DQNPolicy | |
| from .common_utils import default_preprocess_learn | |
| from copy import deepcopy | |
| class DQFDPolicy(DQNPolicy): | |
| r""" | |
| Overview: | |
| Policy class of DQFD algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool True | Whether use priority(PER) | Priority sample, | |
| | update priority | |
| 5 | ``priority_IS`` bool True | Whether use Importance Sampling Weight | |
| | ``_weight`` | to correct biased update. If True, | |
| | priority must be True. | |
| 6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 7 ``nstep`` int 10, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 8 | ``lambda1`` float 1 | multiplicative factor for n-step | |
| 9 | ``lambda2`` float 1 | multiplicative factor for the | |
| | supervised margin loss | |
| 10 | ``lambda3`` float 1e-5 | L2 loss | |
| 11 | ``margin_fn`` float 0.8 | margin function in JE, here we set | |
| | this as a constant | |
| 12 | ``per_train_`` int 10 | number of pertraining iterations | |
| | ``iter_k`` | |
| 13 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| 14 | ``learn.batch_`` int 64 | The number of samples of an iteration | |
| | ``size`` | |
| 15 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. | |
| | ``_rate`` | |
| 16 | ``learn.target_`` int 100 | Frequency of target network update. | Hard(assign) update | |
| | ``update_freq`` | |
| 17 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some | |
| | ``done`` | calculation. | fake termination env | |
| 18 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from | |
| | call of collector. | different envs | |
| 19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 | |
| | ``_len`` | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| type='dqfd', | |
| cuda=False, | |
| on_policy=False, | |
| priority=True, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=True, | |
| discount_factor=0.99, | |
| nstep=10, | |
| learn=dict( | |
| # multiplicative factor for each loss | |
| lambda1=1.0, # n-step return | |
| lambda2=1.0, # supervised loss | |
| lambda3=1e-5, # L2 | |
| # margin function in JE, here we implement this as a constant | |
| margin_function=0.8, | |
| # number of pertraining iterations | |
| per_train_iter_k=10, | |
| # How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| batch_size=64, | |
| learning_rate=0.001, | |
| # ============================================================== | |
| # The following configs are algorithm-specific | |
| # ============================================================== | |
| # (int) Frequence of target network update. | |
| target_update_freq=100, | |
| # (bool) Whether ignore done(usually for max step termination env) | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) Only one of [n_sample, n_episode] should be set | |
| # n_sample=8, | |
| # (int) Cut trajectories into pieces with length "unroll_len". | |
| unroll_len=1, | |
| # The hyperparameter pho, the demo ratio, control the propotion of data\ | |
| # coming from expert demonstrations versus from the agent's own experience. | |
| pho=0.5, | |
| ), | |
| eval=dict(), | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| start=0.95, | |
| end=0.1, | |
| # (int) Decay length(env step) | |
| decay=10000, | |
| ), | |
| replay_buffer=dict(replay_buffer_size=10000, ), | |
| ), | |
| ) | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \ | |
| and target model. | |
| """ | |
| self.lambda1 = self._cfg.learn.lambda1 # n-step return | |
| self.lambda2 = self._cfg.learn.lambda2 # supervised loss | |
| self.lambda3 = self._cfg.learn.lambda3 # L2 | |
| # margin function in JE, here we implement this as a constant | |
| self.margin_function = self._cfg.learn.margin_function | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| # Optimizer | |
| # two optimizers: the performance of adamW is better than adam, so we recommend using the adamW. | |
| self._optimizer = AdamW(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3) | |
| # self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| # use model_wrapper for specialized demands of different modes | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='assign', | |
| update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
| ) | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Forward computation graph of learn mode(updating policy). | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ | |
| np.ndarray or dict/list combinations. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ | |
| recorded in text log and tensorboard, values are python scalar or a list of scalars. | |
| ArgumentsKeys: | |
| - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` | |
| - optional: ``value_gamma``, ``IS`` | |
| ReturnsKeys: | |
| - necessary: ``cur_lr``, ``total_loss``, ``priority`` | |
| - optional: ``action_distribution`` | |
| """ | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=self._priority, | |
| use_priority_IS_weight=self._cfg.priority_IS_weight, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=True | |
| ) | |
| data['done_1'] = data['done_1'].float() | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| q_value = self._learn_model.forward(data['obs'])['logit'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(data['next_obs'])['logit'] | |
| target_q_value_one_step = self._target_model.forward(data['next_obs_1'])['logit'] | |
| # Max q value action (main model) | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| target_q_action_one_step = self._learn_model.forward(data['next_obs_1'])['action'] | |
| # modify the tensor type to match the JE computation in dqfd_nstep_td_error | |
| is_expert = data['is_expert'].float() | |
| data_n = dqfd_nstep_td_data( | |
| q_value, | |
| target_q_value, | |
| data['action'], | |
| target_q_action, | |
| data['reward'], | |
| data['done'], | |
| data['done_1'], | |
| data['weight'], | |
| target_q_value_one_step, | |
| target_q_action_one_step, | |
| is_expert # set is_expert flag(expert 1, agent 0) | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| loss, td_error_per_sample, loss_statistics = dqfd_nstep_td_error( | |
| data_n, | |
| self._gamma, | |
| self.lambda1, | |
| self.lambda2, | |
| self.margin_function, | |
| nstep=self._nstep, | |
| value_gamma=value_gamma | |
| ) | |
| # ==================== | |
| # Q-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
| # '[histogram]action_distribution': data['action'], | |
| } | |
| def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
| """ | |
| Overview: | |
| For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \ | |
| can be used for training directly. A train sample can be a processed transition(DQN with nstep TD) \ | |
| or some continuous transitions(DRQN). | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \ | |
| format as the return value of ``self._process_transition`` method. | |
| Returns: | |
| - samples (:obj:`dict`): The list of training samples. | |
| .. note:: | |
| We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \ | |
| And the user can customize the this data processing procecure by overriding this two methods and collector \ | |
| itself. | |
| """ | |
| data_1 = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma)) | |
| data = get_nstep_return_data( | |
| data, self._nstep, gamma=self._gamma | |
| ) # here we want to include one-step next observation | |
| for i in range(len(data)): | |
| data[i]['next_obs_1'] = data_1[i]['next_obs'] # concat the one-step next observation | |
| data[i]['done_1'] = data_1[i]['done'] | |
| return get_train_sample(data, self._unroll_len) | |