Spaces:
Sleeping
Sleeping
from typing import Any, List, Union, Optional | |
import gym | |
import numpy as np | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.torch_utils import to_ndarray, to_list | |
from ding.utils import ENV_REGISTRY | |
class MountainCarEnv(BaseEnv): | |
""" | |
Implementation of DI-engine's version of the Mountain Car deterministic MDP. | |
Important references that contributed to the creation of this env: | |
> Source code of OpenAI's mountain car gym : https://is.gd/y1FkMT | |
> Gym documentation of mountain car : https://is.gd/29S0dt | |
> Based off DI-engine existing implementation of cartpole_env.py | |
> DI-engine's env creation conventions : https://is.gd/ZHLISj | |
Only __init__ , step, seed and reset are mandatory & impt. | |
The other methods are generally for convenience. | |
""" | |
def __init__(self, cfg: EasyDict) -> None: | |
self._cfg = cfg | |
self._init_flag = False | |
self._replay_path = None | |
# Following specifications from https://is.gd/29S0dt | |
self._observation_space = gym.spaces.Box( | |
low=np.array([-1.2, -0.07]), high=np.array([0.6, 0.07]), shape=(2, ), dtype=np.float32 | |
) | |
self._action_space = gym.spaces.Discrete(3, start=0) | |
self._reward_space = gym.spaces.Box(low=-1, high=0.0, shape=(1, ), dtype=np.float32) | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def reset(self) -> np.ndarray: | |
# Instantiate environment if not already done so | |
if not self._init_flag: | |
self._env = gym.make('MountainCar-v0') | |
self._init_flag = True | |
# Check if we have a valid replay path and save replay video accordingly | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='rl-video-{}'.format(id(self)) | |
) | |
# Set the seeds for randomization. | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
self._action_space.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
self._action_space.seed(self._seed) | |
# Get first observation from original environment | |
obs = self._env.reset() | |
# Convert to numpy array as output | |
obs = to_ndarray(obs).astype(np.float32) | |
# Init final reward : cumulative sum of the real rewards obtained by a whole episode, | |
# used to evaluate the agent Performance on this environment, not used for training. | |
self._eval_episode_return = 0. | |
return obs | |
def step(self, action: np.ndarray) -> BaseEnvTimestep: | |
# Making sure that input action is of numpy ndarray | |
assert isinstance(action, np.ndarray), type(action) | |
# Extract action as int, 0-dim array | |
action = action.squeeze() | |
# Take a step of faith into the unknown! | |
obs, rew, done, info = self._env.step(action) | |
# Cummulate reward | |
self._eval_episode_return += rew | |
# Save final cummulative reward when done. | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
# Making sure we conform to di-engine conventions | |
obs = to_ndarray(obs) | |
rew = to_ndarray([rew]).astype(np.float32) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def close(self) -> None: | |
# If init flag is False, then reset() was never run, no point closing. | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "DI-engine Mountain Car Env" | |