Spaces:
Sleeping
Sleeping
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from ding.torch_utils import MLP | |
| from ding.utils import MODEL_REGISTRY, SequenceType | |
| from numpy import ndarray | |
| from .common import EZNetworkOutput, RepresentationNetworkMLP, PredictionNetworkMLP | |
| from .utils import renormalize, get_params_mean, get_dynamic_mean, get_reward_mean | |
| class EfficientZeroModelMLP(nn.Module): | |
| def __init__( | |
| self, | |
| observation_shape: int = 2, | |
| action_space_size: int = 6, | |
| lstm_hidden_size: int = 512, | |
| latent_state_dim: int = 256, | |
| fc_reward_layers: SequenceType = [32], | |
| fc_value_layers: SequenceType = [32], | |
| fc_policy_layers: SequenceType = [32], | |
| reward_support_size: int = 601, | |
| value_support_size: int = 601, | |
| proj_hid: int = 1024, | |
| proj_out: int = 1024, | |
| pred_hid: int = 512, | |
| pred_out: int = 1024, | |
| self_supervised_learning_loss: bool = True, | |
| categorical_distribution: bool = True, | |
| last_linear_layer_init_zero: bool = True, | |
| state_norm: bool = False, | |
| activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
| norm_type: Optional[str] = 'BN', | |
| discrete_action_encoding_type: str = 'one_hot', | |
| res_connection_in_dynamics: bool = False, | |
| *args, | |
| **kwargs, | |
| ): | |
| """ | |
| Overview: | |
| The definition of the network model of EfficientZero, which is a generalization version for 1D vector obs. | |
| The networks are mainly built on fully connected layers. | |
| Sampled EfficientZero model consists of a representation network, a dynamics network and a prediction network. | |
| The representation network is an MLP network which maps the raw observation to a latent state. | |
| The dynamics network is an MLP+LSTM network which predicts the next latent state, reward_hidden_state and value_prefix given the current latent state and action. | |
| The prediction network is an MLP network which predicts the value and policy given the current latent state. | |
| Arguments: | |
| - observation_shape (:obj:`int`): Observation space shape, e.g. 8 for Lunarlander. | |
| - action_space_size: (:obj:`int`): Action space size, e.g. 4 for Lunarlander. | |
| - lstm_hidden_size (:obj:`int`): The hidden size of LSTM in dynamics network to predict value_prefix. | |
| - latent_state_dim (:obj:`int`): The dimension of latent state, such as 256. | |
| - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head). | |
| - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
| - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
| - reward_support_size (:obj:`int`): The size of categorical reward output | |
| - value_support_size (:obj:`int`): The size of categorical value output. | |
| - proj_hid (:obj:`int`): The size of projection hidden layer. | |
| - proj_out (:obj:`int`): The size of projection output layer. | |
| - pred_hid (:obj:`int`): The size of prediction hidden layer. | |
| - pred_out (:obj:`int`): The size of prediction output layer. | |
| - self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in Sampled EfficientZero model, default set it to False. | |
| - categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution for value, reward/value_prefix. | |
| - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of value/policy mlp, default sets it to True. | |
| - state_norm (:obj:`bool`): Whether to use normalization for latent states, default sets it to True. | |
| - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
| operation to speedup, e.g. ReLU(inplace=True). | |
| - discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. Default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'} | |
| - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
| - res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection for dynamics network, default set it to False. | |
| """ | |
| super(EfficientZeroModelMLP, self).__init__() | |
| if not categorical_distribution: | |
| self.reward_support_size = 1 | |
| self.value_support_size = 1 | |
| else: | |
| self.reward_support_size = reward_support_size | |
| self.value_support_size = value_support_size | |
| self.action_space_size = action_space_size | |
| self.continuous_action_space = False | |
| # The dim of action space. For discrete action space, it is 1. | |
| # For continuous action space, it is the dimension of continuous action. | |
| self.action_space_dim = action_space_size if self.continuous_action_space else 1 | |
| assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type | |
| self.discrete_action_encoding_type = discrete_action_encoding_type | |
| if self.continuous_action_space: | |
| self.action_encoding_dim = action_space_size | |
| else: | |
| if self.discrete_action_encoding_type == 'one_hot': | |
| self.action_encoding_dim = action_space_size | |
| elif self.discrete_action_encoding_type == 'not_one_hot': | |
| self.action_encoding_dim = 1 | |
| self.lstm_hidden_size = lstm_hidden_size | |
| self.proj_hid = proj_hid | |
| self.proj_out = proj_out | |
| self.pred_hid = pred_hid | |
| self.pred_out = pred_out | |
| self.self_supervised_learning_loss = self_supervised_learning_loss | |
| self.last_linear_layer_init_zero = last_linear_layer_init_zero | |
| self.state_norm = state_norm | |
| self.res_connection_in_dynamics = res_connection_in_dynamics | |
| self.representation_network = RepresentationNetworkMLP( | |
| observation_shape=observation_shape, hidden_channels=latent_state_dim, norm_type=norm_type | |
| ) | |
| self.dynamics_network = DynamicsNetworkMLP( | |
| action_encoding_dim=self.action_encoding_dim, | |
| num_channels=latent_state_dim + self.action_encoding_dim, | |
| common_layer_num=2, | |
| lstm_hidden_size=lstm_hidden_size, | |
| fc_reward_layers=fc_reward_layers, | |
| output_support_size=self.reward_support_size, | |
| last_linear_layer_init_zero=self.last_linear_layer_init_zero, | |
| norm_type=norm_type, | |
| res_connection_in_dynamics=self.res_connection_in_dynamics, | |
| ) | |
| self.prediction_network = PredictionNetworkMLP( | |
| action_space_size=action_space_size, | |
| num_channels=latent_state_dim, | |
| fc_value_layers=fc_value_layers, | |
| fc_policy_layers=fc_policy_layers, | |
| output_support_size=self.value_support_size, | |
| last_linear_layer_init_zero=self.last_linear_layer_init_zero, | |
| norm_type=norm_type | |
| ) | |
| if self.self_supervised_learning_loss: | |
| # self_supervised_learning_loss related network proposed in EfficientZero | |
| self.projection_input_dim = latent_state_dim | |
| self.projection = nn.Sequential( | |
| nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, | |
| nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, | |
| nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out) | |
| ) | |
| self.prediction_head = nn.Sequential( | |
| nn.Linear(self.proj_out, self.pred_hid), | |
| nn.BatchNorm1d(self.pred_hid), | |
| activation, | |
| nn.Linear(self.pred_hid, self.pred_out), | |
| ) | |
| def initial_inference(self, obs: torch.Tensor) -> EZNetworkOutput: | |
| """ | |
| Overview: | |
| Initial inference of EfficientZero model, which is the first step of the EfficientZero model. | |
| To perform the initial inference, we first use the representation network to obtain the "latent_state" of the observation. | |
| Then we use the prediction network to predict the "value" and "policy_logits" of the "latent_state", and | |
| also prepare the zeros-like ``reward_hidden_state`` for the next step of the EfficientZero model. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The 1D vector observation data. | |
| Returns (EZNetworkOutput): | |
| - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
| - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. \ | |
| In initial inference, we set it to zero vector. | |
| - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
| - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The hidden state of LSTM about reward. In initial inference, \ | |
| we set it to the zeros-like hidden state (H and C). | |
| Shapes: | |
| - obs (:obj:`torch.Tensor`): :math:`(B, obs_shape)`, where B is batch_size. | |
| - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
| - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
| - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. | |
| """ | |
| batch_size = obs.size(0) | |
| latent_state = self._representation(obs) | |
| policy_logits, value = self._prediction(latent_state) | |
| # zero initialization for reward hidden states | |
| # (hn, cn), each element shape is (layer_num=1, batch_size, lstm_hidden_size) | |
| reward_hidden_state = ( | |
| torch.zeros(1, batch_size, | |
| self.lstm_hidden_size).to(obs.device), torch.zeros(1, batch_size, | |
| self.lstm_hidden_size).to(obs.device) | |
| ) | |
| return EZNetworkOutput(value, [0. for _ in range(batch_size)], policy_logits, latent_state, reward_hidden_state) | |
| def recurrent_inference( | |
| self, latent_state: torch.Tensor, reward_hidden_state: torch.Tensor, action: torch.Tensor | |
| ) -> EZNetworkOutput: | |
| """ | |
| Overview: | |
| Recurrent inference of EfficientZero model, which is the rollout step of the EfficientZero model. | |
| To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``, | |
| ``reward_hidden_state``, ``value_prefix`` by the given current ``latent_state`` and ``action``. | |
| We then use the prediction network to predict the ``value`` and ``policy_logits``. | |
| Arguments: | |
| - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. | |
| - action (:obj:`torch.Tensor`): The predicted action to rollout. | |
| Returns (EZNetworkOutput): | |
| - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
| - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. | |
| - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
| - next_latent_state (:obj:`torch.Tensor`): The predicted next latent state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. | |
| Shapes: | |
| - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. | |
| - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
| - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
| - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. | |
| """ | |
| next_latent_state, reward_hidden_state, value_prefix = self._dynamics(latent_state, reward_hidden_state, action) | |
| policy_logits, value = self._prediction(next_latent_state) | |
| return EZNetworkOutput(value, value_prefix, policy_logits, next_latent_state, reward_hidden_state) | |
| def _representation(self, observation: torch.Tensor) -> Tuple[torch.Tensor]: | |
| """ | |
| Overview: | |
| Use the representation network to encode the observations into latent state. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The 1D vector observation data. | |
| Returns: | |
| - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
| Shapes: | |
| - obs (:obj:`torch.Tensor`): :math:`(B, obs_shape)`, where B is batch_size. | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| """ | |
| latent_state = self.representation_network(observation) | |
| if self.state_norm: | |
| latent_state = renormalize(latent_state) | |
| return latent_state | |
| def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor]: | |
| """ | |
| Overview: | |
| Use the representation network to encode the observations into latent state. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The 1D vector observation data. | |
| Returns: | |
| - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
| - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
| Shapes: | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
| - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
| """ | |
| policy_logits, value = self.prediction_network(latent_state) | |
| return policy_logits, value | |
| def _dynamics(self, latent_state: torch.Tensor, reward_hidden_state: Tuple, | |
| action: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor], torch.Tensor]: | |
| """ | |
| Overview: | |
| Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` | |
| ``value_prefix`` and ``next_reward_hidden_state``. | |
| Arguments: | |
| - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. | |
| - action (:obj:`torch.Tensor`): The predicted action to rollout. | |
| Returns: | |
| - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep. | |
| - next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. | |
| - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. | |
| Shapes: | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. | |
| - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
| """ | |
| # NOTE: the discrete action encoding type is important for some environments | |
| # discrete action space | |
| if self.discrete_action_encoding_type == 'one_hot': | |
| # Stack latent_state with the one hot encoded action | |
| if len(action.shape) == 1: | |
| # (batch_size, ) -> (batch_size, 1) | |
| # e.g., torch.Size([8]) -> torch.Size([8, 1]) | |
| action = action.unsqueeze(-1) | |
| # transform action to one-hot encoding. | |
| # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4) | |
| action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device) | |
| # transform action to torch.int64 | |
| action = action.long() | |
| action_one_hot.scatter_(1, action, 1) | |
| action_encoding = action_one_hot | |
| elif self.discrete_action_encoding_type == 'not_one_hot': | |
| action_encoding = action / self.action_space_size | |
| if len(action_encoding.shape) == 1: | |
| # (batch_size, ) -> (batch_size, 1) | |
| # e.g., torch.Size([8]) -> torch.Size([8, 1]) | |
| action_encoding = action_encoding.unsqueeze(-1) | |
| action_encoding = action_encoding.to(latent_state.device).float() | |
| # state_action_encoding shape: (batch_size, latent_state[1] + action_dim]) or | |
| # (batch_size, latent_state[1] + action_space_size]) depending on the discrete_action_encoding_type. | |
| state_action_encoding = torch.cat((latent_state, action_encoding), dim=1) | |
| # NOTE: the key difference with MuZero | |
| next_latent_state, next_reward_hidden_state, value_prefix = self.dynamics_network( | |
| state_action_encoding, reward_hidden_state | |
| ) | |
| if self.state_norm: | |
| next_latent_state = renormalize(next_latent_state) | |
| return next_latent_state, next_reward_hidden_state, value_prefix | |
| def project(self, latent_state: torch.Tensor, with_grad=True): | |
| """ | |
| Overview: | |
| Project the latent state to a lower dimension to calculate the self-supervised loss, which is proposed in EfficientZero. | |
| For more details, please refer to the paper ``Exploring Simple Siamese Representation Learning``. | |
| Arguments: | |
| - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
| - with_grad (:obj:`bool`): Whether to calculate gradient for the projection result. | |
| Returns: | |
| - proj (:obj:`torch.Tensor`): The result embedding vector of projection operation. | |
| Shapes: | |
| - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. | |
| - proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size. | |
| Examples: | |
| >>> latent_state = torch.randn(256, 64) | |
| >>> output = self.project(latent_state) | |
| >>> output.shape # (256, 1024) | |
| """ | |
| proj = self.projection(latent_state) | |
| if with_grad: | |
| # with grad, use prediction_head | |
| return self.prediction_head(proj) | |
| else: | |
| return proj.detach() | |
| def get_params_mean(self) -> float: | |
| return get_params_mean(self) | |
| class DynamicsNetworkMLP(nn.Module): | |
| def __init__( | |
| self, | |
| action_encoding_dim: int = 2, | |
| num_channels: int = 64, | |
| common_layer_num: int = 2, | |
| fc_reward_layers: SequenceType = [32], | |
| output_support_size: int = 601, | |
| lstm_hidden_size: int = 512, | |
| last_linear_layer_init_zero: bool = True, | |
| activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
| norm_type: Optional[str] = 'BN', | |
| res_connection_in_dynamics: bool = False, | |
| ): | |
| """ | |
| Overview: | |
| The definition of dynamics network in EfficientZero algorithm, which is used to predict next latent state | |
| value_prefix and reward_hidden_state by the given current latent state and action. | |
| The networks are mainly built on fully connected layers. | |
| Arguments: | |
| - action_encoding_dim (:obj:`int`): The dimension of action encoding. | |
| - num_channels (:obj:`int`): The num of channels in latent states. | |
| - common_layer_num (:obj:`int`): The number of common layers in dynamics network. | |
| - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head). | |
| - output_support_size (:obj:`int`): The size of categorical reward output. | |
| - lstm_hidden_size (:obj:`int`): The hidden size of lstm in dynamics network. | |
| - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of value/policy head, default sets it to True. | |
| - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
| operation to speedup, e.g. ReLU(inplace=True). | |
| - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
| - res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection in dynamics network. | |
| """ | |
| super().__init__() | |
| assert num_channels > action_encoding_dim, f'num_channels:{num_channels} <= action_encoding_dim:{action_encoding_dim}' | |
| self.num_channels = num_channels | |
| self.action_encoding_dim = action_encoding_dim | |
| self.latent_state_dim = self.num_channels - self.action_encoding_dim | |
| self.lstm_hidden_size = lstm_hidden_size | |
| self.activation = activation | |
| self.res_connection_in_dynamics = res_connection_in_dynamics | |
| if self.res_connection_in_dynamics: | |
| self.fc_dynamics_1 = MLP( | |
| in_channels=self.num_channels, | |
| hidden_channels=self.latent_state_dim, | |
| layer_num=common_layer_num, | |
| out_channels=self.latent_state_dim, | |
| activation=activation, | |
| norm_type=norm_type, | |
| output_activation=True, | |
| output_norm=True, | |
| # last_linear_layer_init_zero=False is important for convergence | |
| last_linear_layer_init_zero=False, | |
| ) | |
| self.fc_dynamics_2 = MLP( | |
| in_channels=self.latent_state_dim, | |
| hidden_channels=self.latent_state_dim, | |
| layer_num=common_layer_num, | |
| out_channels=self.latent_state_dim, | |
| activation=activation, | |
| norm_type=norm_type, | |
| output_activation=True, | |
| output_norm=True, | |
| # last_linear_layer_init_zero=False is important for convergence | |
| last_linear_layer_init_zero=False, | |
| ) | |
| else: | |
| self.fc_dynamics = MLP( | |
| in_channels=self.num_channels, | |
| hidden_channels=self.latent_state_dim, | |
| layer_num=common_layer_num, | |
| out_channels=self.latent_state_dim, | |
| activation=activation, | |
| norm_type=norm_type, | |
| output_activation=True, | |
| output_norm=True, | |
| # last_linear_layer_init_zero=False is important for convergence | |
| last_linear_layer_init_zero=False, | |
| ) | |
| # input_shape: (sequence_length,batch_size,input_size) | |
| # output_shape: (sequence_length, batch_size, hidden_size) | |
| self.lstm = nn.LSTM(input_size=self.latent_state_dim, hidden_size=self.lstm_hidden_size) | |
| self.fc_reward_head = MLP( | |
| in_channels=self.lstm_hidden_size, | |
| hidden_channels=fc_reward_layers[0], | |
| layer_num=2, | |
| out_channels=output_support_size, | |
| activation=self.activation, | |
| norm_type=norm_type, | |
| output_activation=False, | |
| output_norm=False, | |
| last_linear_layer_init_zero=last_linear_layer_init_zero | |
| ) | |
| def forward(self, state_action_encoding: torch.Tensor, reward_hidden_state): | |
| """ | |
| Overview: | |
| Forward computation of the dynamics network. Predict next latent state given current state_action_encoding and reward hidden state. | |
| Arguments: | |
| - state_action_encoding (:obj:`torch.Tensor`): The state-action encoding, which is the concatenation of \ | |
| latent state and action encoding, with shape (batch_size, num_channels, height, width). | |
| - reward_hidden_state (:obj:`Tuple[torch.Tensor, torch.Tensor]`): The input hidden state of LSTM about reward. | |
| Returns: | |
| - next_latent_state (:obj:`torch.Tensor`): The next latent state, with shape (batch_size, latent_state_dim). | |
| - next_reward_hidden_state (:obj:`torch.Tensor`): The input hidden state of LSTM about reward. | |
| - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. | |
| """ | |
| if self.res_connection_in_dynamics: | |
| # take the state encoding (latent_state), state_action_encoding[:, -self.action_encoding_dim] | |
| # is action encoding | |
| latent_state = state_action_encoding[:, :-self.action_encoding_dim] | |
| x = self.fc_dynamics_1(state_action_encoding) | |
| # the residual link: add state encoding to the state_action encoding | |
| next_latent_state = x + latent_state | |
| next_latent_state_ = self.fc_dynamics_2(next_latent_state) | |
| else: | |
| next_latent_state = self.fc_dynamics(state_action_encoding) | |
| next_latent_state_ = next_latent_state | |
| next_latent_state_unsqueeze = next_latent_state_.unsqueeze(0) | |
| value_prefix, next_reward_hidden_state = self.lstm(next_latent_state_unsqueeze, reward_hidden_state) | |
| value_prefix = self.fc_reward_head(value_prefix.squeeze(0)) | |
| return next_latent_state, next_reward_hidden_state, value_prefix | |
| def get_dynamic_mean(self) -> float: | |
| return get_dynamic_mean(self) | |
| def get_reward_mean(self) -> Tuple[ndarray, float]: | |
| return get_reward_mean(self) | |