import json
import pandas as pd
from pathlib import Path
def load_leaderboard_from_json(json_path="leaderboard_data.json"):
"""Load leaderboard data from JSON file"""
try:
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data['leaderboard']
except FileNotFoundError:
print(f"JSON file {json_path} not found")
return []
except json.JSONDecodeError:
print(f"Error decoding JSON file {json_path}")
return []
def create_leaderboard_df(json_path="leaderboard_data.json"):
"""Create a pandas DataFrame from JSON leaderboard data"""
leaderboard_data = load_leaderboard_from_json(json_path)
if not leaderboard_data:
return pd.DataFrame()
# Convert to DataFrame
df = pd.DataFrame(leaderboard_data)
# Sort by ACC score (descending)
df = df.sort_values('acc', ascending=False).reset_index(drop=True)
# Add ranking icons and make model names clickable links to papers
def add_ranking_icon_and_link(index, model_name, paper_link):
if index == 0:
return f'🥇 {model_name}'
elif index == 1:
return f'🥈 {model_name}'
elif index == 2:
return f'🥉 {model_name}'
else:
return f'{model_name}'
# Format the DataFrame for display
display_df = pd.DataFrame({
'Model': [add_ranking_icon_and_link(i, model, link) for i, (model, link) in enumerate(zip(df['model'], df['link']))],
'Release Date': df['release_date'],
'HF Model': df['hf'].apply(lambda x: f'🤗' if x != "-" else "-"),
'MoE': df['moe'].apply(lambda x: '-' if x == '-' else ('✓' if x else '✗')),
'Parameters': df['params'],
'Open Source': df['open_source'].apply(lambda x: '✓' if x else '✗'),
'ACC Score': df['acc'].apply(lambda x: f"{x:.1f}")
})
return display_df
def get_leaderboard_stats(json_path="leaderboard_data.json"):
"""Get statistics about the leaderboard"""
leaderboard_data = load_leaderboard_from_json(json_path)
if not leaderboard_data:
return {}
df = pd.DataFrame(leaderboard_data)
stats = {
'total_models': len(df),
'open_source_models': df['open_source'].sum(),
'moe_models': df['moe'].apply(lambda x: 1 if x is True else 0).sum(),
'avg_acc': df['acc'].mean(),
'max_acc': df['acc'].max(),
'min_acc': df['acc'].min()
}
return stats