#!/usr/bin/env python3
"""
OpenMed NER Model Discovery App
A beautiful Gradio interface for exploring and discovering OpenMed NER models
"""
import gradio as gr
import pandas as pd
from pathlib import Path
import re
from collections import Counter
class OpenMedModelDiscovery:
def __init__(self):
self.data_file = Path(__file__).parent / "data" / "openmed_models_database.csv"
self.df = pd.read_csv(self.data_file)
# Clean and prepare data
self._prepare_data()
# Define entity colors
self.entity_colors = {
"Chemical": "#2E8B57", # SeaGreen
"DNA": "#4169E1", # RoyalBlue
"RNA": "#1E90FF", # DodgerBlue
"Protein": "#9932CC", # DarkOrchid
"Gene": "#8A2BE2", # BlueViolet
"Gene/Protein": "#6A5ACD", # SlateBlue
"Disease": "#DC143C", # Crimson
"Cell Line": "#FF6347", # Tomato
"Cell Type": "#FF4500", # OrangeRed
"Cell": "#FF8C00", # DarkOrange
"Anatomy": "#32CD32", # LimeGreen
"Species": "#228B22", # ForestGreen
"Cancer": "#8B0000", # DarkRed
"Clinical": "#4682B4", # SteelBlue
"Protein Complex": "#9370DB", # MediumPurple
"Protein Family": "#8B008B", # DarkMagenta
"Protein Variant": "#9400D3", # Violet
"Amino Acid": "#BA55D3", # MediumOrchid
"Cellular Component": "#20B2AA", # LightSeaGreen
"Default": "#696969", # DimGray
}
def _prepare_data(self):
"""Clean and prepare the data for better display"""
# Fill missing values
self.df["entities"] = self.df["entities"].fillna("")
self.df["size_mb"] = pd.to_numeric(self.df["size_mb"], errors="coerce")
# Create size categories
self.df["size_category"] = self.df["size_mb"].apply(self._categorize_size)
# Split entities into lists for easier filtering
self.df["entity_list"] = self.df["entities"].apply(
lambda x: [e.strip() for e in x.split(",")] if x else []
)
def _categorize_size(self, size_mb):
"""Categorize model size"""
if pd.isna(size_mb):
return "Unknown"
elif size_mb < 100:
return "Compact (<100M)"
elif size_mb < 200:
return "Medium (100-200M)"
elif size_mb < 400:
return "Large (200-400M)"
else:
return "XLarge (>400M)"
def create_entity_badge(self, entity):
"""Create a colored badge for an entity type"""
color = self.entity_colors.get(entity, self.entity_colors["Default"])
return f'{entity}'
def create_model_card(self, row):
"""Create a beautiful model card HTML"""
entities_html = " ".join(
[self.create_entity_badge(e) for e in row["entity_list"] if e]
)
size_text = f"{row['size_mb']:.0f}M" if pd.notna(row["size_mb"]) else "Unknown"
card_html = f"""
{row['short_name']}
{row['architecture']}
Domain: {row['domain']} |
Size: {size_text}
Entities:
{entities_html if entities_html else 'No entities available'}
Description:
{row['description']}
đ Usage Code
from transformers import {row['code_snippet']}
"""
return card_html
def search_models(
self, text_query, entity_filters, domain_filters, size_filters, limit=20
):
"""Search and filter models based on criteria"""
filtered_df = self.df.copy()
# Text search
if text_query.strip():
text_mask = (
filtered_df["model_name"].str.contains(text_query, case=False, na=False)
| filtered_df["short_name"].str.contains(
text_query, case=False, na=False
)
| filtered_df["domain"].str.contains(text_query, case=False, na=False)
| filtered_df["description"].str.contains(
text_query, case=False, na=False
)
| filtered_df["entities"].str.contains(text_query, case=False, na=False)
)
filtered_df = filtered_df[text_mask]
# Entity filters
if entity_filters:
entity_mask = filtered_df["entity_list"].apply(
lambda entities: any(entity in entity_filters for entity in entities)
)
filtered_df = filtered_df[entity_mask]
# Domain filters
if domain_filters:
filtered_df = filtered_df[filtered_df["domain"].isin(domain_filters)]
# Size filters
if size_filters:
filtered_df = filtered_df[filtered_df["size_category"].isin(size_filters)]
# Limit results
filtered_df = filtered_df.head(limit)
if filtered_df.empty:
return "No models found đ
Try adjusting your search criteria
"
# Create model cards
cards_html = f"Found {len(filtered_df)} models
"
for _, row in filtered_df.iterrows():
cards_html += self.create_model_card(row)
return cards_html
def get_entity_stats(self):
"""Get entity statistics"""
all_entities = []
for entity_list in self.df["entity_list"]:
all_entities.extend(entity_list)
entity_counts = Counter(all_entities)
# Remove empty strings
entity_counts = {k: v for k, v in entity_counts.items() if k}
return entity_counts
def get_filter_options(self):
"""Get all available filter options"""
# Get unique domains
domains = sorted(self.df["domain"].unique())
# Get unique sizes
sizes = sorted(self.df["size_category"].unique())
# Get all unique entities
all_entities = set()
for entity_list in self.df["entity_list"]:
all_entities.update(entity_list)
entities = sorted([e for e in all_entities if e]) # Remove empty strings
return entities, domains, sizes
# Initialize the app
app = OpenMedModelDiscovery()
# Get filter options
ALL_ENTITIES = [
"amino_acid",
"anatomical_system",
"anatomy",
"cancer",
"cell",
"cell_line",
"cell_line_name",
"cell_type",
"cellular_component",
"chemical",
"clinical",
"developing_anatomical_structure",
"disease",
"dna",
"gene/protein",
"gene_or_protein",
"immaterial_anatomical_entity",
"multi_tissue_structure",
"organ",
"organism",
"organism_subdivision",
"organism_substance",
"pathological_formation",
"protein",
"protein_complex",
"protein_family",
"protein_variant",
"rna",
"species",
"tissue",
]
entities, domains, sizes = app.get_filter_options()
# Use comprehensive entity list instead of dynamic extraction for UI
entities = ALL_ENTITIES
# Custom CSS
custom_css = """
"""
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue", secondary_hue="green", neutral_hue="slate"
),
css=custom_css,
title="đŦ OpenMed NER Model Discovery App",
) as demo:
# Header
gr.HTML(
"""
đŦ OpenMed NER Model Discovery
Discover the perfect NER model for your biomedical text analysis from 380+ free OpenMed models
"""
)
with gr.Tabs():
# Search Tab
with gr.Tab("đ Search Models", elem_id="search-tab"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### đ¯ Search & Filter")
text_search = gr.Textbox(
label="Search Models",
placeholder="e.g., chemical detection, cancer genomics, DNA...",
lines=1,
)
entity_filter = gr.Dropdown(
choices=entities,
label="Entities",
info="Search and select entities (e.g., Chemical, DNA, Disease)...",
multiselect=True,
value=[],
interactive=True,
)
with gr.Row():
domain_filter = gr.CheckboxGroup(
choices=domains, label="Domains", value=[]
)
size_filter = gr.CheckboxGroup(
choices=sizes, label="Model Size", value=[]
)
result_limit = gr.Slider(
minimum=5, maximum=50, value=20, step=5, label="Max Results"
)
clear_btn = gr.Button("đī¸ Clear Filters", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### đ Search Results")
results_display = gr.HTML()
# Auto-search on any input change
def auto_search(*args):
return app.search_models(*args)
# Connect auto-search to all inputs
for component in [
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
]:
component.change(
fn=auto_search,
inputs=[
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
],
outputs=results_display,
)
# Clear filters
def clear_filters():
return "", [], [], [], 20
clear_btn.click(
fn=clear_filters,
outputs=[
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
],
)
# About Tab
with gr.Tab("âšī¸ About", elem_id="about-tab"):
gr.Markdown(
"""
# đŦ About OpenMed NER Model Discovery
## What is OpenMed?
OpenMed is a collection of **380+ state-of-the-art Named Entity Recognition (NER) models** for biomedical and clinical text analysis. All models are:
- â
**Completely Free** - Apache 2.0 license
- â
**High Performance** - F1 scores up to 99.8%
- â
**Ready to Use** - Compatible with Hugging Face Transformers
- â
**Diverse** - Covers 8+ medical domains and 20+ entity types
## đ¯ Use Cases
- **Drug Discovery** - Identify chemicals and compounds
- **Clinical Research** - Extract diseases and symptoms
- **Genomics** - Detect genes, proteins, and DNA/RNA
- **Medical Records** - Parse anatomical terms and clinical notes
- **Pharmacovigilance** - Monitor drug safety and adverse events
## đī¸ Model Architectures
- **BERT** - Bidirectional transformers for robust performance
- **DeBERTa** - Enhanced attention mechanisms
- **RoBERTa** - Optimized training for biomedical text
- **ModernBERT** - Latest advances in transformer architecture
## đ Coverage
- **8 Medical Domains** - Pharmacology, Genomics, Oncology, Pathology, etc.
- **20+ Entity Types** - Chemical, DNA, RNA, Protein, Disease, Anatomy, etc.
- **Multiple Sizes** - From 33M to 568M parameters
- **380+ Models** - Comprehensive coverage for any biomedical NLP task
## đ Getting Started
1. **Search** - Use the search tab to find models by domain, entity type, or keywords
2. **Compare** - View model cards with performance metrics and descriptions
3. **Copy Code** - Get ready-to-use code snippets
4. **Deploy** - Download and use with Hugging Face Transformers
## đ§ Contact & Support
- **Models** - [OpenMed on Hugging Face](https://huggingface.co/OpenMed)
- **Paper** - Coming soon on arXiv
- **Community** - Join discussions on Hugging Face
---
Built with â¤ī¸ for the biomedical research community
"""
)
# Load initial results
demo.load(fn=lambda: app.search_models("", [], [], [], 20), outputs=results_display)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True)