Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,493 Bytes
7461999 9bbea8e 7461999 9bbea8e 7461999 9bbea8e 7461999 9bbea8e 7461999 9bbea8e 7461999 9bbea8e 7461999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import nltk
nltk.download('averaged_perceptron_tagger_eng')
import os
import torch
import random
import numpy as np
import gradio as gr
import librosa
import spaces
import torch
import capspeech.nar.generate as nar
from transformers import AutoTokenizer, set_seed
import soundfile as sf
import time
from huggingface_hub import snapshot_download
# Load models
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
model_list = nar.load_model(device, "CapTTS")
emomodel_list = nar.load_model(device, "EmoCapTTS")
accmodel_list = nar.load_model(device, "AccCapTTS")
@spaces.GPU
def generate_audio_captts(transcript, caption, random_seed, fix_seed, duration, fix_duration, speed, step, cfg):
if fix_seed:
nar.seed_everything(random_seed)
if not fix_duration:
duration = None
step = int(step)
audio_arr = nar.run(model_list, device, duration, transcript, caption, speed, step, cfg)
return 24000, audio_arr
@spaces.GPU
def generate_audio_emocaptts(transcript, caption, random_seed, fix_seed, duration, fix_duration, speed, step, cfg):
if fix_seed:
nar.seed_everything(random_seed)
if not fix_duration:
duration = None
step = int(step)
audio_arr = nar.run(emomodel_list, device, duration, transcript, caption, speed, step, cfg)
return 24000, audio_arr
@spaces.GPU
def generate_audio_acccaptts(transcript, caption, random_seed, fix_seed, duration, fix_duration, speed, step, cfg):
if fix_seed:
nar.seed_everything(random_seed)
if not fix_duration:
duration = None
step = int(step)
audio_arr = nar.run(accmodel_list, device, duration, transcript, caption, speed, step, cfg)
return 24000, audio_arr
# Examples (if needed for the demo)
examples = [
["A male speaker delivers his words in a measured pace, exhibiting a high-pitched, happy, and animated tone in a clean environment.", "We just release a new text to speech project today!",],
["A mature male voice, rough and husky, ideal for public speaking engagements.", "You are not your job. You are not how much money you have in the bank. You are not the car you drive. You're not the contents of your wallet."],
["A very young feminine, very cute voice, she speaks with a slight lisp.", "Where he got his authority, I don't know, but one thing I do know, he had none from me."],
["With a low-pitched voice, an elderly woman delivers her speech slowly and monotonously.", "From these genres and from these spaces, you know, and the feelings of what these games can bring."],
]
examples_acc = [
["An Indian-accented professional woman's voice for client and public interaction.", "In big countries, such small things keep happening."],
["A young girl's English-accented voice, suitable for customer service and public engagement roles.", "She don't listen to U K rap, if it ain't Dave, or Cench."],
["Bright teenage girl's voice, with an American accent, ideal for client and public interaction.", "If we live forever, can we really be said to live?"],
["A mature, deep, and rough Scottish-accented female voice, with a hint of weakness, ideal for client and public interaction in customer service or community relations.", "When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow."],
]
examples_emo = [
["She speaks in a calm, measured tone, conveying a sense of quiet, unassuming presence.", "All those moments will be lost in time, like tears in rain."],
["A middle-aged woman speaks in a low voice, her words dripping with disgust and annoyance.", "Why does your car smell like a dead RAT? It's absolutely vile."],
["A high-pitched, animated, happy male speaker delivers crisp, enunciated words in a fast speed.", "Wait a minute! I can't believe you just built a time machine!"],
["A young adult female, speaking in a slow, slightly low-pitched, monotone voice, exuding a profound void and quiet sadness.", "This is doctor Shaw, last survivor of the covenant. If you’re receiving this transmission, make no attempt to come to its point of origin."],
]
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
## CapSpeech: A Prompt-Guided Expressive Text-to-Speech Synthesizer
👋 Welcome to the 🧢CapSpeech live demo.
🔗 Learn more about this project on the [🧢CapSpeech Homepage](https://wanghelin1997.github.io/CapSpeech-demo/).
📃 Licensed under CC BY-NC 4.0.
**🔧 Usage Tips**
- Quick Start: Enter a style caption and a transcript to generate expressive speech just the way you want.
- Model Tabs: Toggle model checkpoints by clicking the Model tab, with each checkpoint tailored for a specific downstream use case.
- Speed/Duration Settings: Adjust the speed and duration if the predicted speech pace sounds unnatural.
- Flow Matching Settings: Modify the CFG scale and sampling steps to refine prompt alignment and improve generation quality.
""")
with gr.Tab("Style-Captioned Text-to-Speech"):
gr.Markdown("""This checkpoint offers balanced performance and supports general style control.""")
# with gr.Row(equal_height=True):
caption_input = gr.Textbox(
label="Voice Style Caption",
info="How should the speaker sound? Think timbre, pace, emotion, accent, etc.",
placeholder="Describe the desired speaking style...",
lines=2,
value="A mature male voice, rough and husky, ideal for public speaking engagements."
# scale=3,
)
transcript_input = gr.Textbox(
label="Speech Transcript/Content",
info="What should the speaker say?",
placeholder="Enter speech content...",
lines=2,
# scale=4,
value="You are not your job. You are not how much money you have in the bank. You are not the car you drive. You're not the contents of your wallet."
)
run_button = gr.Button("Generate", scale=1, variant="primary")
result = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Speed/Duration Settings", open=True):
speed_ratio = gr.Slider(minimum=0.5,
maximum=2,
step=0.1,
value=1,
scale=2,
label="Speed",
info="Scale the duration predicted by the model.")
audio_length = gr.Slider(minimum=1, maximum=20, step=1, value=0,
label="Audio Duration",
info='Manually set an audio duration.')
fix_length = gr.Checkbox(label="Fix Audio Duration",
info="Enable to use a fixed audio duration.",
value=False)
with gr.Accordion("Flow Matching Settings", open=False):
seed = gr.Slider(minimum=0, maximum=100, step=1, value=42, label="Seed")
fix_seed = gr.Checkbox(label="Fix Seed",
info="Enable to use a fixed random seed for reproducibility.",
value=False)
cfg = gr.Slider(minimum=1.0, maximum=5.0, step=0.5, value=2.0, label="CFG Scale")
step = gr.Slider(minimum=20, maximum=100, step=1, value=32, label="Flow Steps")
gr.Examples(
examples=examples,
inputs=[caption_input, transcript_input]
)
run_button.click(
fn=generate_audio_acccaptts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
transcript_input.submit(
fn=generate_audio_captts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
with gr.Tab("Accent-Captioned Text-to-Speech"):
gr.Markdown("""This checkpoint is specifically fine-tuned for enhanced accent control.""")
# with gr.Row(equal_height=True):
caption_input = gr.Textbox(
label="Voice Style Caption",
info="How should the speaker sound? Think timbre, pace, emotion, accent, etc.",
placeholder="Describe the desired speaking style...",
lines=2,
value="A young girl's English-accented voice, suitable for customer service and public engagement roles."
# scale=3
)
# with gr.Row(equal_height=True):
transcript_input = gr.Textbox(
label="Speech Transcript/Content",
info="What should the speaker say?",
placeholder="Enter speech content...",
lines=2,
value="She don't listen to U K rap, if it ain't Dave, or Cench."
# scale=4
)
run_button = gr.Button("Generate", scale=1, variant="primary")
result = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Speed/Duration Settings", open=True):
speed_ratio = gr.Slider(minimum=0.5,
maximum=2,
step=0.1,
value=1,
scale=2,
label="Speed",
info="Scale the duration predicted by the model.")
audio_length = gr.Slider(minimum=1, maximum=20, step=1, value=0,
label="Audio duration",
info='Manually set an audio duration.')
fix_length = gr.Checkbox(label="Fix Audio Duration",
info="Enable to use a fixed audio duration.",
value=False)
with gr.Accordion("Flow Matching Settings", open=False):
seed = gr.Slider(minimum=0, maximum=100, step=1, value=42, label="Seed")
fix_seed = gr.Checkbox(label="Fix Seed",
info="Enable to use a fixed random seed for reproducibility.",
value=False)
cfg = gr.Slider(minimum=1.0, maximum=5.0, step=0.5, value=2.0, label="CFG Scale")
step = gr.Slider(minimum=20, maximum=100, step=1, value=32, label="Flow Steps")
gr.Examples(
examples=examples_acc,
inputs=[caption_input, transcript_input]
)
run_button.click(
fn=generate_audio_acccaptts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
transcript_input.submit(
fn=generate_audio_acccaptts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
with gr.Tab("Emotion-Captioned Text-to-Speech"):
gr.Markdown("""This checkpoint is specifically fine-tuned to enhance emotional expressiveness.""")
# with gr.Row(equal_height=True):
caption_input = gr.Textbox(
label="Voice Style Caption",
info="How should the speaker sound? Think timbre, pace, emotion, accent, etc.",
placeholder="Describe the desired speaking style...",
lines=2,
value="A middle-aged woman speaks in a low voice, her words dripping with disgust and annoyance."
# scale=3
)
# with gr.Row(equal_height=True):
transcript_input = gr.Textbox(
label="Speech Transcript/Content",
info="What should the speaker say?",
placeholder="Enter speech content...",
lines=2,
value="Why does your car smell like a dead RAT? It's absolutely vile."
# scale=4
)
run_button = gr.Button("Generate", scale=1, variant="primary")
result = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Speed/Duration Settings", open=True):
speed_ratio = gr.Slider(minimum=0.5,
maximum=2,
step=0.1,
value=1,
scale=2,
label="Speed",
info="Scale the duration predicted by the model.")
audio_length = gr.Slider(minimum=1, maximum=20, step=1, value=0,
label="Audio Duration",
info='Manually set an audio duration.')
fix_length = gr.Checkbox(label="Fix Audio Duration",
info="Enable to use a fixed audio duration.",
value=False)
with gr.Accordion("Flow Matching Settings", open=False):
seed = gr.Slider(minimum=0, maximum=100, step=1, value=42, label="Seed")
fix_seed = gr.Checkbox(label="Fix Seed",
info="Enable to use a fixed random seed for reproducibility.",
value=False)
cfg = gr.Slider(minimum=1.0, maximum=5.0, step=0.5, value=2.0, label="CFG Scale")
step = gr.Slider(minimum=20, maximum=100, step=1, value=32, label="Flow Steps")
gr.Examples(
examples=examples_emo,
inputs=[caption_input, transcript_input]
)
run_button.click(
fn=generate_audio_emocaptts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
transcript_input.submit(
fn=generate_audio_emocaptts,
inputs=[transcript_input, caption_input, seed, fix_seed, audio_length, fix_length, speed_ratio, step, cfg],
outputs=[result]
)
demo.launch() |