File size: 2,376 Bytes
dd9600d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# --------------------------------------------------------
# References:
# https://github.com/jxhe/unify-parameter-efficient-tuning
# --------------------------------------------------------

import math
import torch
import torch.nn as nn


class Adapter(nn.Module):
    def __init__(
        self,
        config=None,
        d_model=768,
        bottleneck=None,
        dropout=0.0,
        init_option="lora",
        adapter_scalar="1.0",
        adapter_layernorm_option="none"
    ):
        super().__init__()
        self.n_embd = config.d_model if d_model is None else d_model
        self.down_size = config.attn_bn if bottleneck is None else bottleneck

        #_before
        self.adapter_layernorm_option = adapter_layernorm_option

        self.adapter_layer_norm_before = None
        if adapter_layernorm_option == "in" or adapter_layernorm_option == "out":
            self.adapter_layer_norm_before = nn.LayerNorm(self.n_embd)

        if adapter_scalar == "learnable_scalar":
            self.scale = nn.Parameter(torch.ones(1))
        else:
            self.scale = float(adapter_scalar)

        self.down_proj = nn.Linear(self.n_embd, self.down_size)
        self.non_linear_func = nn.ReLU()
        self.up_proj = nn.Linear(self.down_size, self.n_embd)

        self.dropout = dropout
        if init_option == "bert":
            raise NotImplementedError
        elif init_option == "lora":
            with torch.no_grad():
                nn.init.kaiming_uniform_(self.down_proj.weight, a=math.sqrt(5))
                nn.init.zeros_(self.up_proj.weight)
                nn.init.zeros_(self.down_proj.bias)
                nn.init.zeros_(self.up_proj.bias)

    def forward(self, x, add_residual=True, residual=None):
        residual = x if residual is None else residual
        if self.adapter_layernorm_option == 'in':
            x = self.adapter_layer_norm_before(x)
        
        down = self.down_proj(x)
        
        down = self.non_linear_func(down)
        down = nn.functional.dropout(down, p=self.dropout, training=self.training)
        up = self.up_proj(down)
        
        up = up * self.scale

        if self.adapter_layernorm_option == 'out':
            up = self.adapter_layer_norm_before(up)

        if add_residual:
            output = up + residual
        else:
            output = up

        return output