File size: 6,411 Bytes
dd9600d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# @ hwang258@jhu.edu
import os
import json
import torch
import random
import logging
import shutil
import typing as tp
import numpy as np
import torchaudio
import sys
from torch.utils.data import Dataset
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))


def read_json(path):
    with open(path, 'r') as f:
        return json.load(f)


class CapSpeech(Dataset):
    def __init__(
        self,
        dataset_dir: str = None,
        clap_emb_dir: str = None,
        t5_folder_name: str = "t5",
        phn_folder_name: str = "g2p",
        manifest_name: str = "manifest",
        json_name: str = "jsons",
        dynamic_batching: bool = True,
        text_pad_token: int = -1,
        audio_pad_token: float = 0.0,
        split: str = "val",
        sr: int = 24000,
        norm_audio: bool = False,
        vocab_file: str = None,
    ):
        super().__init__()
        self.dataset_dir = dataset_dir
        self.clap_emb_dir = clap_emb_dir
        self.t5_folder_name = t5_folder_name
        self.phn_folder_name = phn_folder_name
        self.manifest_name = manifest_name
        self.json_name = json_name
        self.dynamic_batching = dynamic_batching
        self.text_pad_token = text_pad_token
        self.audio_pad_token = torch.tensor(audio_pad_token)
        self.split = split
        self.sr = sr
        self.norm_audio = norm_audio

        assert self.split in ['train', 'train_small', 'val', 'test']
        manifest_fn = os.path.join(self.dataset_dir, self.manifest_name, self.split+".txt")

        meta = read_json(os.path.join(self.dataset_dir, self.json_name, self.split + ".json"))
        self.meta = {item["segment_id"]: item["audio_path"] for item in meta}

        with open(manifest_fn, "r") as rf:
            data = [l.strip().split("\t") for l in rf.readlines()]

        # data = [item for item in data if item[2] == 'none'] # remove sound effects

        self.data = [item[0] for item in data]
        self.tag_list = [item[1] for item in data]

        logging.info(f"number of data points for {self.split} split: {len(self.data)}")

        # phoneme vocabulary
        if vocab_file is None:
            vocab_fn = os.path.join(self.dataset_dir, "vocab.txt")
        else:
            vocab_fn = vocab_file
        with open(vocab_fn, "r") as f:
            temp = [l.strip().split(" ") for l in f.readlines() if len(l) != 0]
            self.phn2num = {item[1]:int(item[0]) for item in temp}

    def __len__(self):
        return len(self.data)

    def _load_audio(self, audio_path):
        try:
            y, sr = torchaudio.load(audio_path)
            if y.shape[0] > 1:
                y = y.mean(dim=0, keepdim=True)
            if sr != self.sr:
                resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)
                y = resampler(y)
            if self.norm_audio:
                eps = 1e-9
                max_val = torch.max(torch.abs(y))
                y = y / (max_val + eps)
            if torch.isnan(y.mean()):
                return None
            return y
        except:
            return None

    def _load_phn_enc(self, index):
        try:
            seg_id = self.data[index]
            pf = os.path.join(self.dataset_dir, self.phn_folder_name, seg_id+".txt")
            audio_path = self.meta[seg_id]
            cf = os.path.join(self.dataset_dir, self.t5_folder_name, seg_id+".npz")
            tagf = os.path.join(self.clap_emb_dir, self.tag_list[index]+'.npz')
            with open(pf, "r") as p:
                phns = [l.strip() for l in p.readlines()]
                assert len(phns) == 1, phns
                x = [self.phn2num[item] for item in phns[0].split(" ")]
            c = np.load(cf)['arr_0']
            c = torch.tensor(c).squeeze()
            tag = np.load(tagf)['arr_0']
            tag = torch.tensor(tag).squeeze()
            y = self._load_audio(audio_path)
            if y is not None:
                return x, y, c, tag
            return None, None, None, None
        except:
            return None, None, None, None

    def __getitem__(self, index):
        x, y, c, tag = self._load_phn_enc(index)
        if x is None:
            return {
                "x": None,
                "x_len": None,
                "y": None,
                "y_len": None,
                "c": None,
                "c_len": None,
                "tag": None
            }
        x_len, y_len, c_len = len(x), len(y[0]), len(c)
        y_len = y_len / self.sr

        if y_len * self.sr / 256 <= x_len:
            return {
                "x": None,
                "x_len": None,
                "y": None,
                "y_len": None,
                "c": None,
                "c_len": None,
                "tag": None
            }
            
        x = torch.LongTensor(x)
        return {
            "x": x,
            "x_len": x_len,
            "y": y,
            "y_len": y_len,
            "c": c,
            "c_len": c_len,
            "tag": tag
        }

    def collate(self, batch):
        out = {key:[] for key in batch[0]}
        for item in batch:
            if item['x'] == None: # deal with load failure
                continue
            if item['c'].ndim != 2:
                continue
            for key, val in item.items():
                out[key].append(val)

        res = {}
        res["x"] = torch.nn.utils.rnn.pad_sequence(out["x"], batch_first=True, padding_value=self.text_pad_token)
        res["x_lens"] = torch.LongTensor(out["x_len"])
        if self.dynamic_batching:
            res['y'] = torch.nn.utils.rnn.pad_sequence([item.transpose(1,0) for item in out['y']],padding_value=self.audio_pad_token)
            res['y'] = res['y'].permute(1,2,0) # T B K -> B K T
        else:
            res['y'] = torch.stack(out['y'], dim=0)

        res["y_lens"] = torch.Tensor(out["y_len"])
        res['c'] = torch.nn.utils.rnn.pad_sequence(out['c'], batch_first=True)
        res["c_lens"] = torch.LongTensor(out["c_len"])
        res["tag"] = torch.stack(out['tag'], dim=0)
        return res


if __name__ == "__main__":    
    # debug
    import argparse
    from torch.utils.data import DataLoader
    from accelerate import Accelerator

    dataset = CapSpeech(
        dataset_dir="./data/capspeech",
        clap_emb_dir="./data/clap_embs/",
        split="val"
    )