Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,036 Bytes
dd9600d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import time
import random
import argparse
import numpy as np
from tqdm import tqdm
from accelerate import Accelerator
from einops import rearrange
from cached_path import cached_path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
# replace this with BigVGAN
import bigvgan
from model.modules import MelSpec
from network.crossdit import CrossDiT
from dataset.capspeech import CapSpeech
from utils import load_checkpoint, make_pad_mask
from utils import get_lr_scheduler, load_yaml_with_includes
from inference import eval_model
def parse_args():
parser = argparse.ArgumentParser()
# Config settings
parser.add_argument('--config-name', type=str, required=True)
parser.add_argument('--pretrained-ckpt', type=str, required=True)
# Training settings
parser.add_argument("--amp", type=str, default='fp16')
parser.add_argument('--epochs', type=int, default=15)
parser.add_argument('--num-workers', type=int, default=32)
parser.add_argument('--num-threads', type=int, default=1)
parser.add_argument('--eval-every-step', type=int, default=1000)
# save all states including optimizer every save-every-step
parser.add_argument('--save-every-step', type=int, default=1000)
parser.add_argument('--resume-from', type=str, default=None, help='Path to checkpoint to resume training')
# Log and random seed
parser.add_argument('--random-seed', type=int, default=2025)
parser.add_argument('--log-step', type=int, default=200)
parser.add_argument('--log-dir', type=str, default='./logs/')
parser.add_argument('--save-dir', type=str, default='./ckpts/')
return parser.parse_args()
def setup_directories(args, params):
args.log_dir = os.path.join(args.log_dir, params['model_name']) + '/'
args.save_dir = os.path.join(args.save_dir, params['model_name']) + '/'
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.save_dir, exist_ok=True)
def set_device(args):
torch.set_num_threads(args.num_threads)
if torch.cuda.is_available():
args.device = 'cuda'
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cuda.matmul.allow_tf32 = True
if torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
args.device = 'cpu'
def prepare_batch(batch, mel, latent_sr):
x, x_lens, y, y_lens, c, c_lens, tag = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"], batch["c"], batch["c_lens"], batch["tag"]
# add len for clap embedding
x_lens = x_lens + 1
with torch.no_grad():
audio_clip = mel(y)
audio_clip = rearrange(audio_clip, 'b d n -> b n d')
y_lens = (y_lens * latent_sr).long()
return x, x_lens, audio_clip, y_lens, c, c_lens, tag
if __name__ == '__main__':
args = parse_args()
params = load_yaml_with_includes(args.config_name)
# random seed
set_device(args)
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
accelerator = Accelerator(mixed_precision=args.amp,
gradient_accumulation_steps=params['opt']['accumulation_steps'],
step_scheduler_with_optimizer=False)
# dataset
train_set = CapSpeech(**params['data']['trainset'])
train_loader = DataLoader(train_set, num_workers=args.num_workers,
batch_size=params['opt']['batch_size'], shuffle=True,
collate_fn=train_set.collate)
val_set = CapSpeech(**params['data']['valset'])
val_loader = DataLoader(val_set, num_workers=0,
batch_size=1, shuffle=False,
collate_fn=val_set.collate)
# load dit
model = CrossDiT(**params['model'])
model.load_state_dict(torch.load(args.pretrained_ckpt)["model"])
# mel spectrogram - move to accelerator device after preparation
mel = MelSpec(**params['mel'])
latent_sr = params['mel']['target_sample_rate'] / params['mel']['hop_length']
# load vocoder
vocoder = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
vocoder.remove_weight_norm()
vocoder = vocoder.eval().to(accelerator.device)
# prepare opt
optimizer = torch.optim.AdamW(model.parameters(), lr=params['opt']['learning_rate'])
if args.resume_from is not None and os.path.exists(args.resume_from):
checkpoint = torch.load(args.resume_from, map_location='cpu')
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
start_epoch = checkpoint["epoch"] + 1 # Continue from the next epoch
print(f"Resuming training from checkpoint: {args.resume_from}, starting from epoch {start_epoch}.")
else:
global_step = 0
start_epoch = 0
lr_scheduler = get_lr_scheduler(optimizer, 'customized', **params['opt']['lr_scheduler'])
# Prepare with accelerator
(model, optimizer, lr_scheduler,
train_loader, val_loader) = accelerator.prepare(model, optimizer, lr_scheduler, train_loader, val_loader)
# Move mel and vocos to the same device as model AFTER preparation
mel = mel.to(accelerator.device)
vocoder = vocoder.to(accelerator.device)
# Add synchronization point
accelerator.wait_for_everyone()
losses = 0.0
if accelerator.is_main_process:
setup_directories(args, params)
trainable_params = sum(param.nelement() for param in model.parameters() if param.requires_grad)
print("Number of trainable parameters: %.2fM" % (trainable_params / 1e6))
# Add synchronization point
accelerator.wait_for_everyone()
# REMOVED initial evaluation to prevent deadlock
# We'll evaluate after the first epoch or at the first eval step
for epoch in range(start_epoch, args.epochs):
model.train()
# Use accelerator's progress bar for correct handling in distributed setup
progress_bar = tqdm(train_loader, disable=not accelerator.is_local_main_process)
for step, batch in enumerate(progress_bar):
with accelerator.accumulate(model):
(text, text_lens, audio_clips, audio_lens, prompt, prompt_lens, clap) = prepare_batch(batch, mel, latent_sr)
# prepare flow mathing
x1 = audio_clips
x0 = torch.randn_like(x1)
t = torch.rand((x1.shape[0],), dtype=x1.dtype, device=x1.device)
sigma = rearrange(t, 'b -> b 1 1')
noisy_x1 = (1 - sigma) * x0.clone() + sigma * x1.clone()
flow = x1.clone() - x0.clone()
# option: audio-prompt based zero-shot tts
# tts_mask = create_tts_mask(seq_len, x1.shape[1], params['opt']['mask_range'])
# # cond = x1.clone(), cond[tts_mask[..., None]] = 0
# cond = torch.where(tts_mask[..., None], torch.zeros_like(x1), x1)
cond = None
# prepare batch cfg
drop_prompt = (torch.rand(x1.shape[0]) < params['opt']['drop_spk'])
drop_text = drop_prompt & (torch.rand(x1.shape[0]) < params['opt']['drop_text'])
prompt[drop_prompt] = 0.0
prompt_lens[drop_prompt] = 1
clap[drop_text] = 0.0
text[drop_text] = -1
seq_len_audio = audio_clips.shape[1]
pad_mask = make_pad_mask(audio_lens, seq_len_audio).to(audio_clips.device)
seq_len_prompt = prompt.shape[1]
prompt_mask = make_pad_mask(prompt_lens, seq_len_prompt).to(prompt.device)
pred = model(x=noisy_x1, cond=cond,
prompt=prompt, clap=clap, text=text, time=t,
mask=pad_mask, prompt_mask=prompt_mask)
loss = F.mse_loss(pred, flow, reduction="none")
loss = loss[pad_mask].mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
if 'grad_clip' in params['opt'] and params['opt']['grad_clip'] > 0:
accelerator.clip_grad_norm_(model.parameters(),
max_norm=params['opt']['grad_clip'])
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Fixed step counting - increment only once per actual step, not per accumulation step
if accelerator.sync_gradients:
global_step += 1
losses += loss.item()
# Add progress bar description
if accelerator.is_local_main_process:
progress_bar.set_description(f"Epoch {epoch+1}, Loss: {loss.item():.6f}")
if global_step % args.log_step == 0:
losses = losses / args.log_step # Calculate average loss
if accelerator.is_main_process:
current_time = time.asctime(time.localtime(time.time()))
epoch_info = f'Epoch: [{epoch + 1}][{args.epochs}]'
batch_info = f'Global Step: {global_step}'
loss_info = f'Loss: {losses:.6f}'
# Extract the learning rate from the optimizer
lr = optimizer.param_groups[0]['lr']
lr_info = f'Learning Rate: {lr:.6f}'
log_message = f'{current_time}\n{epoch_info} {batch_info} {loss_info} {lr_info}\n'
with open(args.log_dir + 'log.txt', mode='a') as n:
n.write(log_message)
# Reset loss accumulator
losses = 0.0
# Evaluation logic
if global_step % args.eval_every_step == 0:
# Set model to eval mode
model.eval()
# Synchronize before evaluation
accelerator.wait_for_everyone()
if accelerator.is_main_process:
# Get unwrapped model for evaluation
unwrapped_model = accelerator.unwrap_model(model)
# Run evaluation without specifying device
eval_model(unwrapped_model, vocoder, mel, val_loader, params,
steps=25, cfg=2.0,
sway_sampling_coef=-1.0,
# Remove explicit device setting
epoch=global_step, save_path=args.log_dir + 'output/', val_num=1)
# Save model checkpoint
accelerator.save({
"model": unwrapped_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step,
}, args.save_dir + str(global_step) + '.pt')
# Save full state including optimizer if needed
if global_step % args.save_every_step == 0:
accelerator.save_state(f"{args.save_dir}{global_step}")
# Synchronize after evaluation and saving
accelerator.wait_for_everyone()
# Set model back to train mode
model.train()
# Synchronize at the end of each epoch
accelerator.wait_for_everyone()
|