Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,837 Bytes
dd9600d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import time
import random
import argparse
import numpy as np
from tqdm import tqdm
from huggingface_hub import snapshot_download
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from capspeech.nar import bigvgan
import librosa
from capspeech.nar.utils import make_pad_mask
from capspeech.nar.model.modules import MelSpec
from capspeech.nar.network.crossdit import CrossDiT
from capspeech.nar.inference import sample
from capspeech.nar.utils import load_yaml_with_includes
import soundfile as sf
from transformers import T5EncoderModel, AutoTokenizer
from g2p_en import G2p
import laion_clap
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import time
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
valid_symbols = [
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH', '<BLK>', ',', '.', '!', '?',
'<B_start>', '<B_end>', '<I_start>', '<I_end>'
]
def encode(text, text_tokenizer):
if '<B_start>' in text:
assert '<B_end>' in text, text
text = text.split(">", 1)[1].strip() # remove the audio label
seg1 = text.split("<B_start>")[0]
seg2 = text.split("<B_start>")[1].split("<B_end>")[0]
seg3 = text.split("<B_end>")[1]
phn1 = text_tokenizer(seg1)
if len(phn1) > 0:
phn1.append(" ")
phn1.append("<B_start>")
phn1.append(" ")
phn2 = text_tokenizer(seg2)
if len(phn2) > 0:
phn2.append(" ")
phn2.append("<B_end>")
phn3 = text_tokenizer(seg3)
if len(phn3) > 0:
phn2.append(" ")
phn = [*phn1,*phn2,*phn3]
elif '<I_start>' in text:
assert '<I_end>' in text, text
text = text.split(">", 1)[1].strip() # remove the audio label
seg1 = text.split("<I_start>")[0]
seg2 = text.split("<I_start>")[1].split("<I_end>")[0]
seg3 = text.split("<I_end>")[1]
phn1 = text_tokenizer(seg1)
if len(phn1) > 0:
phn1.append(" ")
phn1.append("<I_start>")
phn1.append(" ")
phn2 = text_tokenizer(seg2)
if len(phn2) > 0:
phn2.append(" ")
phn2.append("<I_end>")
phn3 = text_tokenizer(seg3)
if len(phn3) > 0:
phn2.append(" ")
phn = [*phn1,*phn2,*phn3]
else:
phn = text_tokenizer(text)
phn = [item.replace(' ', '<BLK>') for item in phn]
phn = [item for item in phn if item in valid_symbols]
return phn
def estimate_duration_range(text):
words = text.strip().split()
num_words = len(words)
min_duration = num_words / 4.0
max_duration = num_words / 1.5
ref_min = num_words / 3.0
ref_max = num_words / 1.5
return min_duration, max_duration, ref_min, ref_max
def get_duration(text, predicted_duration):
cleaned_text = re.sub(r"<[^>]*>", "", text)
min_dur, max_dur, ref_min, ref_max = estimate_duration_range(cleaned_text)
event_dur = random.uniform(0.5, 2.0) if "<I_start>" in text else 0
if predicted_duration < min_dur + event_dur or predicted_duration > max_dur + event_dur:
return round(random.uniform(ref_min, ref_max), 2) + event_dur
return predicted_duration
def run(
model_list,
device,
duration,
transcript,
caption,
speed=1.0,
steps=25,
cfg=2.0
):
model, vocoder, phn2num, text_tokenizer, clap_model, duration_tokenizer, duration_model, caption_tokenizer, caption_encoder = model_list
print("Start Generation...")
start_time = time.time()
if "<B_start>" in transcript or "<I_start>" in transcript:
tag = transcript.split(">", 1)[0].strip()
tag = tag[1:].lower().replace("_"," ")
else:
tag = "none"
phn = encode(transcript, text_tokenizer)
text_tokens = [phn2num[item] for item in phn]
text = torch.LongTensor(text_tokens).unsqueeze(0).to(device)
if duration is None:
duration_inputs = caption + " <NEW_SEP> " + transcript
duration_inputs = duration_tokenizer(duration_inputs, return_tensors="pt", padding="max_length", truncation=True, max_length=400)
with torch.no_grad():
batch_encoding = caption_tokenizer(caption, return_tensors="pt")
ori_tokens = batch_encoding["input_ids"].to(device)
prompt = caption_encoder(input_ids=ori_tokens).last_hidden_state.squeeze().unsqueeze(0).to(device)
tag_data = [tag]
tag_embed = clap_model.get_text_embedding(tag_data, use_tensor=True)
clap = tag_embed.squeeze().unsqueeze(0).to(device)
if duration is None:
duration_outputs = duration_model(**duration_inputs)
predicted_duration = duration_outputs.logits.squeeze().item()
duration = get_duration(transcript, predicted_duration)
if speed == 0:
speed = 1
duration = duration / speed
audio_clips = torch.zeros([1, math.ceil(duration*24000/256), 100]).to(device)
cond = None
seq_len_prompt = prompt.shape[1]
prompt_lens = torch.Tensor([prompt.shape[1]])
prompt_mask = make_pad_mask(prompt_lens, seq_len_prompt).to(prompt.device)
gen = sample(model, vocoder,
audio_clips, cond, text, prompt, clap, prompt_mask,
steps=steps, cfg=cfg,
sway_sampling_coef=-1.0, device=device)
end_time = time.time()
audio_len = gen.shape[-1] / 24000 # sampling rate fixed in this work
rtf = (end_time-start_time)/audio_len
print(f"RTF: {rtf:.4f}")
return gen
def load_model(device, task):
print("Downloading model from Huggingface...")
local_dir = snapshot_download(
repo_id="OpenSound/CapSpeech-models"
)
if task == "PT":
model_path = os.path.join(local_dir, "nar_PT.pt")
elif task == "CapTTS":
model_path = os.path.join(local_dir, "nar_CapTTS.pt")
elif task == "EmoCapTTS":
model_path = os.path.join(local_dir, "nar_EmoCapTTS.pt")
elif task == "AccCapTTS":
model_path = os.path.join(local_dir, "nar_AccCapTTS.pt")
elif task == "AgentTTS":
model_path = os.path.join(local_dir, "nar_AgentTTS.pt")
else:
assert 1 == 0, task
print("Loading models...")
params = load_yaml_with_includes(os.path.join(local_dir, "nar_pretrain.yaml"))
model = CrossDiT(**params['model']).to(device)
checkpoint = torch.load(model_path)['model']
model.load_state_dict(checkpoint, strict=True)
# mel spectrogram
mel = MelSpec(**params['mel']).to(device)
latent_sr = params['mel']['target_sample_rate'] / params['mel']['hop_length']
# load vocab
vocab_fn = os.path.join(os.path.join(local_dir, "vocab.txt"))
with open(vocab_fn, "r") as f:
temp = [l.strip().split(" ") for l in f.readlines() if len(l) != 0]
phn2num = {item[1]:int(item[0]) for item in temp}
# load g2p
text_tokenizer = G2p()
# load vocoder
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
vocoder = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
vocoder.remove_weight_norm()
vocoder = vocoder.eval().to(device)
# load t5
caption_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
caption_encoder = T5EncoderModel.from_pretrained("google/flan-t5-large").to(device).eval()
# load clap
clap_model = laion_clap.CLAP_Module(enable_fusion=False)
clap_model.load_ckpt(os.path.join(local_dir, "clap-630k-best.pt"))
# load duration predictor
duration_tokenizer = AutoTokenizer.from_pretrained(os.path.join(local_dir, "nar_duration_predictor"))
duration_model = AutoModelForSequenceClassification.from_pretrained(os.path.join(local_dir, "nar_duration_predictor"))
duration_model.eval()
model_list = [model, vocoder, phn2num, text_tokenizer, clap_model, duration_tokenizer, duration_model, caption_tokenizer, caption_encoder]
return model_list
|