File size: 11,899 Bytes
dd9600d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import time
import random
import argparse
import numpy as np
from tqdm import tqdm
from accelerate import Accelerator
from einops import rearrange
from cached_path import cached_path

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader

# replace this with BigVGAN
import bigvgan

from model.modules import MelSpec
from network.crossdit import CrossDiT
from dataset.capspeech import CapSpeech
from utils import load_checkpoint, make_pad_mask
from utils import get_lr_scheduler, load_yaml_with_includes
from inference import eval_model


def parse_args():
    parser = argparse.ArgumentParser()

    # Config settings
    parser.add_argument('--config-name', type=str, required=True)

    # Training settings
    parser.add_argument("--amp", type=str, default='fp16')
    parser.add_argument('--epochs', type=int, default=15)
    parser.add_argument('--num-workers', type=int, default=32)
    parser.add_argument('--num-threads', type=int, default=1)
    parser.add_argument('--eval-every-step', type=int, default=10000)
    # save all states including optimizer every save-every-step
    parser.add_argument('--save-every-step', type=int, default=10000)
    parser.add_argument('--resume-from', type=str, default=None, help='Path to checkpoint to resume training')

    # Log and random seed
    parser.add_argument('--random-seed', type=int, default=2025)
    parser.add_argument('--log-step', type=int, default=500)
    parser.add_argument('--log-dir', type=str, default='./logs/')
    parser.add_argument('--save-dir', type=str, default='./ckpts/')
    return parser.parse_args()


def setup_directories(args, params):
    args.log_dir = os.path.join(args.log_dir, params['model_name']) + '/'
    args.save_dir = os.path.join(args.save_dir, params['model_name']) + '/'

    os.makedirs(args.log_dir, exist_ok=True)
    os.makedirs(args.save_dir, exist_ok=True)


def set_device(args):
    torch.set_num_threads(args.num_threads)
    if torch.cuda.is_available():
        args.device = 'cuda'
        torch.cuda.manual_seed_all(args.random_seed)
        torch.backends.cuda.matmul.allow_tf32 = True
        if torch.backends.cudnn.is_available():
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False
    else:
        args.device = 'cpu'


def prepare_batch(batch, mel, latent_sr):
    x, x_lens, y, y_lens, c, c_lens, tag = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"], batch["c"], batch["c_lens"], batch["tag"]

    # add len for clap embedding
    x_lens = x_lens + 1

    with torch.no_grad():
        # print(y.mean())
        audio_clip = mel(y)

        audio_clip = rearrange(audio_clip, 'b d n -> b n d')
        y_lens = (y_lens * latent_sr).long()

    return x, x_lens, audio_clip, y_lens, c, c_lens, tag


if __name__ == '__main__':

    args = parse_args()
    params = load_yaml_with_includes(args.config_name)

    # random seed
    set_device(args)
    random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)

    accelerator = Accelerator(mixed_precision=args.amp,
                              gradient_accumulation_steps=params['opt']['accumulation_steps'],
                              step_scheduler_with_optimizer=False)

    # dataset
    train_set = CapSpeech(**params['data']['trainset'])
    train_loader = DataLoader(train_set, num_workers=args.num_workers,
                              batch_size=params['opt']['batch_size'], shuffle=True,
                              collate_fn=train_set.collate)

    val_set = CapSpeech(**params['data']['valset'])
    val_loader = DataLoader(val_set, num_workers=0,
                            batch_size=1, shuffle=False,
                            collate_fn=train_set.collate)

    # load dit
    model = CrossDiT(**params['model'])

    # mel spectrogram - move to accelerator device after preparation
    mel = MelSpec(**params['mel'])
    latent_sr = params['mel']['target_sample_rate'] / params['mel']['hop_length']

    # load vocoder
    vocoder = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
    vocoder.remove_weight_norm()
    vocoder = vocoder.eval().to(accelerator.device)

    # prepare opt
    optimizer = torch.optim.AdamW(model.parameters(), lr=params['opt']['learning_rate'])

    if args.resume_from is not None and os.path.exists(args.resume_from):
        checkpoint = torch.load(args.resume_from, map_location='cpu')
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        global_step = checkpoint["global_step"]
        start_epoch = checkpoint["epoch"] + 1  # Continue from the next epoch
        print(f"Resuming training from checkpoint: {args.resume_from}, starting from epoch {start_epoch}.")
    else:
        global_step = 0
        start_epoch = 0
    
    lr_scheduler = get_lr_scheduler(optimizer, 'customized', **params['opt']['lr_scheduler'])
    
    # Prepare with accelerator
    (model, optimizer, lr_scheduler, 
     train_loader, val_loader) = accelerator.prepare(model, optimizer, lr_scheduler, train_loader, val_loader)
    
    # Move mel and vocos to the same device as model AFTER preparation
    mel = mel.to(accelerator.device)
    vocoder = vocoder.to(accelerator.device)

    # Add synchronization point
    accelerator.wait_for_everyone()

    losses = 0.0

    if accelerator.is_main_process:
        setup_directories(args, params)
        trainable_params = sum(param.nelement() for param in model.parameters() if param.requires_grad)
        print("Number of trainable parameters: %.2fM" % (trainable_params / 1e6))
    
    # Add synchronization point
    accelerator.wait_for_everyone()

    # REMOVED initial evaluation to prevent deadlock
    # We'll evaluate after the first epoch or at the first eval step

    for epoch in range(start_epoch, args.epochs):
        model.train()
        
        # Use accelerator's progress bar for correct handling in distributed setup
        progress_bar = tqdm(train_loader, disable=not accelerator.is_local_main_process)
        
        for step, batch in enumerate(progress_bar):
            with accelerator.accumulate(model):
                (text, text_lens, audio_clips, audio_lens, prompt, prompt_lens, clap) = prepare_batch(batch, mel, latent_sr)
                # prepare flow mathing
                x1 = audio_clips
                x0 = torch.randn_like(x1)
                t = torch.rand((x1.shape[0],), dtype=x1.dtype, device=x1.device)
                sigma = rearrange(t, 'b -> b 1 1')
                noisy_x1 = (1 - sigma) * x0.clone() + sigma * x1.clone()
                flow = x1.clone() - x0.clone()
                # option: audio-prompt based zero-shot tts
                # tts_mask = create_tts_mask(seq_len, x1.shape[1], params['opt']['mask_range'])
                # # cond = x1.clone(), cond[tts_mask[..., None]] = 0
                # cond = torch.where(tts_mask[..., None], torch.zeros_like(x1), x1)
                cond = None

                # prepare batch cfg
                drop_prompt = (torch.rand(x1.shape[0]) < params['opt']['drop_spk'])
                drop_text = drop_prompt & (torch.rand(x1.shape[0]) < params['opt']['drop_text'])

                prompt[drop_prompt] = 0.0
                prompt_lens[drop_prompt] = 1
                clap[drop_text] = 0.0
                text[drop_text] = -1

                seq_len_audio = audio_clips.shape[1]
                pad_mask = make_pad_mask(audio_lens, seq_len_audio).to(audio_clips.device)

                seq_len_prompt = prompt.shape[1]
                prompt_mask = make_pad_mask(prompt_lens, seq_len_prompt).to(prompt.device)

                pred = model(x=noisy_x1, cond=cond,
                             prompt=prompt, clap=clap, text=text, time=t,
                             mask=pad_mask, prompt_mask=prompt_mask)

                loss = F.mse_loss(pred, flow, reduction="none")
                loss = loss[pad_mask].mean()

                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    if 'grad_clip' in params['opt'] and params['opt']['grad_clip'] > 0:
                        accelerator.clip_grad_norm_(model.parameters(),
                                                    max_norm=params['opt']['grad_clip'])
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Fixed step counting - increment only once per actual step, not per accumulation step
            if accelerator.sync_gradients:
                global_step += 1
                losses += loss.item()

                # Add progress bar description
                if accelerator.is_local_main_process:
                    progress_bar.set_description(f"Epoch {epoch+1}, Loss: {loss.item():.6f}")

                if global_step % args.log_step == 0:
                    losses = losses / args.log_step  # Calculate average loss
                    
                    if accelerator.is_main_process:
                        current_time = time.asctime(time.localtime(time.time()))
                        epoch_info = f'Epoch: [{epoch + 1}][{args.epochs}]'
                        batch_info = f'Global Step: {global_step}'
                        loss_info = f'Loss: {losses:.6f}'

                        # Extract the learning rate from the optimizer
                        lr = optimizer.param_groups[0]['lr']
                        lr_info = f'Learning Rate: {lr:.6f}'

                        log_message = f'{current_time}\n{epoch_info}    {batch_info}    {loss_info}    {lr_info}\n'

                        with open(args.log_dir + 'log.txt', mode='a') as n:
                            n.write(log_message)

                    # Reset loss accumulator
                    losses = 0.0
                
                # Evaluation logic
                if global_step % args.eval_every_step == 0:
                    # Set model to eval mode
                    model.eval()
                    
                    # Synchronize before evaluation
                    accelerator.wait_for_everyone()
                    
                    if accelerator.is_main_process:
                        # Get unwrapped model for evaluation
                        unwrapped_model = accelerator.unwrap_model(model)
                        
                        # Run evaluation without specifying device
                        eval_model(unwrapped_model, vocoder, mel, val_loader, params,
                                   steps=25, cfg=2.0,
                                   sway_sampling_coef=-1.0, 
                                   # Remove explicit device setting
                                   epoch=global_step, save_path=args.log_dir + 'output/', val_num=1)
                        
                        # Save model checkpoint
                        accelerator.save({
                            "model": unwrapped_model.state_dict(),
                            "optimizer": optimizer.state_dict(),
                            "epoch": epoch,
                            "global_step": global_step,
                        }, args.save_dir + str(global_step) + '.pt')
                        
                        # Save full state including optimizer if needed
                        if global_step % args.save_every_step == 0:
                            accelerator.save_state(f"{args.save_dir}{global_step}")
                    
                    # Synchronize after evaluation and saving
                    accelerator.wait_for_everyone()
                    
                    # Set model back to train mode
                    model.train()

        # Synchronize at the end of each epoch
        accelerator.wait_for_everyone()