CapSpeech-TTS / capspeech /ar /training /finetune_captts.py
OpenSound's picture
Upload 518 files
dd9600d verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Train Parler-TTS using 🤗 Accelerate"""
import logging
import os
import re
import sys
import time
import math
import contextlib
from multiprocess import set_start_method
from datetime import timedelta
import inspect
from tqdm import tqdm
from pathlib import Path
import wandb
import torch
from torch.utils.data import DataLoader
import datasets
from datasets import DatasetDict, Dataset, IterableDataset, concatenate_datasets
from huggingface_hub import HfApi
import transformers
from transformers import AutoFeatureExtractor, AutoTokenizer, HfArgumentParser
from transformers.trainer_pt_utils import LengthGroupedSampler
from transformers.optimization import get_scheduler
from transformers.utils import send_example_telemetry
from accelerate import Accelerator, skip_first_batches
from accelerate.utils import set_seed, AutocastKwargs, InitProcessGroupKwargs, TorchDynamoPlugin, DistributedDataParallelKwargs
from accelerate.utils.memory import release_memory
from parler_tts import (
ParlerTTSConfig,
ParlerTTSForConditionalGeneration,
build_delay_pattern_mask,
)
from training.utils import (
get_last_checkpoint,
rotate_checkpoints,
log_pred,
log_metric,
load_all_codec_checkpoints,
save_codec_checkpoint,
get_last_codec_checkpoint_step,
)
from training.arguments_captts import ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments
from training.data_captts import load_multiple_datasets, DataCollatorParlerTTSWithPadding, DataCollatorEncodecWithPadding
from training.eval import clap_similarity, wer, si_sdr
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_parler_tts", model_args, data_args)
if data_args.wandb_key is not None:
wandb.login(key=data_args.wandb_key)
if training_args.dtype == "float16":
mixed_precision = "fp16"
torch_dtype = torch.float16
elif training_args.dtype == "bfloat16":
mixed_precision = "bf16"
torch_dtype = torch.bfloat16
else:
mixed_precision = "no"
torch_dtype = torch.float32
if data_args.pad_to_max_length and (
data_args.max_duration_in_seconds is None
or data_args.max_prompt_token_length is None
or data_args.max_description_token_length is None
):
raise ValueError(
"`pad_to_max_length` is `True` but one of the following parameters has not been set: `max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`"
)
padding = "max_length" if data_args.pad_to_max_length else "longest"
####### A. Preparation
kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=120)), DistributedDataParallelKwargs(find_unused_parameters=False)]
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
mixed_precision=mixed_precision,
log_with=training_args.report_to,
project_dir=training_args.output_dir,
kwargs_handlers=kwargs_handlers,
)
accelerator.init_trackers(
project_name=data_args.wandb_project,
config={
"learning_rate": training_args.learning_rate,
"model_name_or_path": model_args.model_name_or_path,
"num_train_epochs": training_args.num_train_epochs,
"gradient_accumulation_steps": training_args.gradient_accumulation_steps,
"per_device_train_batch_size": training_args.per_device_train_batch_size,
"global_batch_size": training_args.per_device_train_batch_size * accelerator.num_processes,
"mixed_precision": mixed_precision,
"lr_scheduler_type": training_args.lr_scheduler_type,
"warmup_steps": training_args.warmup_steps,
"freeze_text_encoder": model_args.freeze_text_encoder,
"max_duration_in_seconds": data_args.max_duration_in_seconds,
"weight_decay": training_args.weight_decay,
"adam_beta1": training_args.adam_beta1,
"adam_beta2": training_args.adam_beta2,
"temperature": model_args.temperature,
},
init_kwargs={"wandb": {"name": data_args.wandb_run_name}} if data_args.wandb_run_name else {},
)
# Detecting last checkpoint and eventually continue from last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
# Log a small summary on each proces
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
num_workers = data_args.preprocessing_num_workers
# 1. First, lett's instantiate the feature extractor, tokenizers and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
# load feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
sampling_rate = feature_extractor.sampling_rate
# load prompt tokenizer
prompt_tokenizer = AutoTokenizer.from_pretrained(
model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
use_fast=model_args.use_fast_tokenizer,
padding_side=model_args.prompt_padding_side,
)
# load description tokenizer
description_tokenizer = AutoTokenizer.from_pretrained(
model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
use_fast=model_args.use_fast_tokenizer,
)
if model_args.use_fast_tokenizer:
logger.warning(
"Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235"
)
prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
# 2. Now, let's load the dataset
if data_args.save_to_disk is not None:
os.makedirs(data_args.save_to_disk, exist_ok=True)
# assume that the dataset has been saved to `save_to_disk` if the latter is not empty
dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
if dataset_was_precomputed:
with accelerator.local_main_process_first():
vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
else:
raw_datasets = DatasetDict()
columns_to_keep = {
"target_audio_column_name": data_args.target_audio_column_name,
"prompt_column_name": data_args.prompt_column_name,
"source": data_args.source_column_name,
}
if data_args.description_column_name is not None:
columns_to_keep["description_column_name"] = data_args.description_column_name
if training_args.do_train:
raw_datasets["train"] = load_multiple_datasets(
accelerator,
data_args.train_dataset_name,
splits=data_args.train_split_name,
dataset_samples=data_args.train_dataset_samples,
seed=training_args.seed,
cache_dir=model_args.cache_dir,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
columns_to_keep=columns_to_keep.values(),
prompt_column_name=data_args.prompt_column_name,
audio_column_name=data_args.target_audio_column_name,
sampling_rate=sampling_rate,
logger=logger,
librittsr_dir=data_args.librittsr_dir,
other_dir=data_args.other_dir,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
for key in columns_to_keep:
if columns_to_keep[key] not in raw_datasets["train"].column_names:
raise ValueError(
f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
f" Make sure to set `--{key}` to the correct audio column - one of"
f" {', '.join(raw_datasets['train'].column_names)}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"] = load_multiple_datasets(
accelerator,
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
splits=data_args.eval_split_name,
cache_dir=model_args.cache_dir,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
columns_to_keep=columns_to_keep.values(),
prompt_column_name=data_args.prompt_column_name,
audio_column_name=data_args.target_audio_column_name,
sampling_rate=sampling_rate,
logger=logger,
librittsr_dir=data_args.librittsr_dir,
other_dir=data_args.other_dir,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
if data_args.max_eval_samples is not None:
with accelerator.local_main_process_first():
raw_datasets["eval"] = (
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# 3. Next, let's load the config.
config = ParlerTTSConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
if training_args.codebook_weights is not None and len(training_args.codebook_weights) != config.decoder.num_codebooks:
raise ValueError(f"`codebook_weights` has length {len(training_args.codebook_weights)} when it should be of length {config.decoder.num_codebooks}.")
# update pad token id and decoder_start_token_id
config.decoder.update(
{
"cross_attention_implementation_strategy": model_args.cross_attention_implementation_strategy
if model_args.cross_attention_implementation_strategy is not None
else None,
"codebook_weights": training_args.codebook_weights if training_args.codebook_weights is not None else config.decoder.codebook_weights
}
)
config.update(
{
"pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else config.pad_token_id,
"decoder_start_token_id": model_args.decoder_start_token_id
if model_args.decoder_start_token_id is not None
else config.decoder_start_token_id,
}
)
with open("events.txt", "r") as f:
events = [line.strip() for line in f]
events = ["<"+event.lower().replace(" ", "_")+">" for event in events]
events.append("<B_start>")
events.append("<B_end>")
events.append("<I_start>")
events.append("<I_end>")
special_tokens = {"additional_special_tokens": events}
prompt_tokenizer.add_special_tokens(special_tokens)
description_tokenizer.add_special_tokens(special_tokens)
padded_vocab_size = ((len(prompt_tokenizer) + 127) // 128) * 128
config.vocab_size = padded_vocab_size
# create model
model = ParlerTTSForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
ignore_mismatched_sizes=True,
cache_dir=model_args.cache_dir,
config=config,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
attn_implementation={"decoder": model_args.attn_implementation, "text_encoder": "eager"},
)
model.text_encoder.resize_token_embeddings(padded_vocab_size)
# enable gradient checkpointing if necessary
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# 4. Now we preprocess the datasets including loading the audio, resampling and normalization
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
# so that we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
# derive max & min input length for sample rate & max duration
sampling_rate = feature_extractor.sampling_rate
max_target_length = int(data_args.max_duration_in_seconds * sampling_rate)
min_target_length = int(data_args.min_duration_in_seconds * sampling_rate)
target_audio_column_name = data_args.target_audio_column_name
description_column_name = data_args.description_column_name
prompt_column_name = data_args.prompt_column_name
feature_extractor_input_name = feature_extractor.model_input_names[0]
audio_encoder_pad_token_id = config.decoder.pad_token_id
audio_encoder_eos_token_id = config.decoder.eos_token_id
audio_encoder_bos_token_id = model.generation_config.decoder_start_token_id
max_length = model.generation_config.max_length
num_codebooks = model.decoder.config.num_codebooks
bandwidth = model_args.bandwidth
attn_implementation = model_args.attn_implementation
# Freeze Encoders
model.freeze_encoders(model_args.freeze_text_encoder)
# Test all gather - used for warmout and avoiding timeout
logger.debug(str(accelerator.process_index), main_process_only=False, in_order=True)
test_tensor = torch.tensor([accelerator.process_index], device=accelerator.device)
gathered_tensor = accelerator.gather(test_tensor)
print("gathered_tensor", gathered_tensor)
accelerator.wait_for_everyone()
if not dataset_was_precomputed:
# Filter on text length
if description_column_name is not None and data_args.max_text_length is not None:
with accelerator.local_main_process_first():
# filter description that is shorter than max_text_length
raw_datasets = raw_datasets.filter(
lambda x: len(x) < data_args.max_text_length,
num_proc=num_workers,
input_columns=[description_column_name],
)
# Preprocessing the dataset.
# We need to tokenize the texts.
def pass_through_processors(description, prompt):
batch = {}
batch["input_ids"] = description_tokenizer(description.strip())["input_ids"]
batch["prompt_input_ids"] = prompt_tokenizer(prompt.strip())["input_ids"]
return batch
with accelerator.local_main_process_first():
# this is a trick to avoid to rewrite the entire audio column which takes ages
vectorized_datasets = raw_datasets.map(
pass_through_processors,
remove_columns=next(iter(raw_datasets.values())).column_names,
input_columns=[description_column_name, prompt_column_name],
num_proc=num_workers,
desc="preprocess datasets",
)
# We use Accelerate to perform distributed inference
# T5 doesn't support fp16
autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
# Now we encode the audio labels with encodec.
####### B. Encode audio
logger.info("*** Encode target audio with encodec ***")
# no need to prepare audio_decoder because used for inference without mixed precision
# see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
if training_args.torch_compile:
audio_decoder = accelerator.prepare_model(model.audio_encoder, evaluation_mode=True)
else:
audio_decoder = model.audio_encoder
encoder_data_collator = DataCollatorEncodecWithPadding(
feature_extractor,
audio_column_name=target_audio_column_name,
librittsr_dir=data_args.librittsr_dir,
other_dir=data_args.other_dir,
feature_extractor_input_name=feature_extractor_input_name,
max_length=max_target_length,
padding=padding,
)
encoder_signature = set(inspect.signature(audio_decoder.forward).parameters)
def apply_audio_decoder(batch):
len_audio = batch.pop("len_audio")
audio_decoder.to(batch["input_values"].device).eval()
if bandwidth is not None:
batch["bandwidth"] = bandwidth
elif "num_quantizers" in encoder_signature:
batch["num_quantizers"] = num_codebooks
elif "num_codebooks" in encoder_signature:
batch["num_codebooks"] = num_codebooks
elif "n_quantizers" in encoder_signature:
batch["n_quantizers"] = num_codebooks
with torch.no_grad():
labels = audio_decoder.encode(**batch)["audio_codes"]
output = {}
output["len_audio"] = len_audio
# (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
output["labels"] = labels.squeeze(0).transpose(1, 2)
# if `pad_to_max_length`, the maximum corresponding audio length of the current batch is max_duration*sampling_rate
max_length = len_audio.max() if padding != "max_length" else max_target_length
output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / max_length
return output
# (1, codebooks, seq_len) where seq_len=1
bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
def postprocess_dataset(labels):
# (1, codebooks, seq_len)
labels = torch.tensor(labels).unsqueeze(0)
# add bos
labels = torch.cat([bos_labels, labels], dim=-1)
labels, delay_pattern_mask = build_delay_pattern_mask(
labels,
bos_token_id=audio_encoder_bos_token_id,
pad_token_id=audio_encoder_eos_token_id,
max_length=labels.shape[-1] + num_codebooks,
num_codebooks=num_codebooks,
)
# the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
# to take care of EOS
# we want labels to look like this:
# - [B, a, b, E, E, E, E]
# - [B, B, c, d, E, E, E]
# - [B, B, B, e, f, E, E]
# - [B, B, B, B, g, h, E]
labels = torch.where(delay_pattern_mask == -1, audio_encoder_eos_token_id, delay_pattern_mask)
# the first timestamp is associated to a row full of BOS, let's get rid of it
# we also remove the last timestampts (full of PAD)
output = {"labels": labels[:, 1:]}
return output
for split in vectorized_datasets:
data_loader = DataLoader(
raw_datasets[split],
batch_size=training_args.audio_encoder_per_device_batch_size,
collate_fn=encoder_data_collator,
num_workers=training_args.dataloader_num_workers,
pin_memory=True,
)
data_loader = accelerator.prepare(data_loader)
total_inference_steps = len(data_loader)
start_step = get_last_codec_checkpoint_step(os.path.join(data_args.temporary_save_to_disk, split))
accelerator.wait_for_everyone()
if start_step > 0:
logger.info(f"Resuming {split} from step {start_step}")
# efficiently skip the first n batches
start_step += 1
data_loader = skip_first_batches(data_loader, start_step)
all_generated_labels = []
all_lens = []
if start_step < total_inference_steps:
for i, batch in enumerate(tqdm(data_loader, disable=not accelerator.is_local_main_process)):
cur_step = start_step + i
generate_labels = apply_audio_decoder(batch)
generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
generate_labels = accelerator.gather_for_metrics(generate_labels)
if accelerator.is_main_process:
lab = generate_labels["labels"].cpu().transpose(1, 2).to(torch.int16)
rat = generate_labels["ratio"].cpu().squeeze(1)
lens = generate_labels["len_audio"].cpu().squeeze(1)
lab = [l[:, : int(ratio * length)] for (l, ratio, length) in zip(lab, rat, lens)]
all_generated_labels.extend(lab)
all_lens.extend(lens)
if ((cur_step + 1) % data_args.save_codec_steps == 0) or (
cur_step == total_inference_steps - 1
):
tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
tmp_labels = tmp_labels.map(
postprocess_dataset,
num_proc=data_args.preprocessing_num_workers, # this one is resource consuming if many processor.
input_columns=["labels"],
desc="Postprocessing labeling",
)
save_codec_checkpoint(
os.path.join(data_args.temporary_save_to_disk, split), tmp_labels, cur_step
)
all_generated_labels = []
all_lens = []
accelerator.wait_for_everyone()
if accelerator.is_main_process and len(all_generated_labels) > 0:
tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
tmp_labels = tmp_labels.map(
postprocess_dataset,
num_proc=data_args.preprocessing_num_workers, # this one is resource consuming if many processor.
input_columns=["labels"],
desc="Postprocessing labeling",
)
save_codec_checkpoint(os.path.join(data_args.temporary_save_to_disk, split), tmp_labels, cur_step)
all_generated_labels = []
all_lens = []
accelerator.wait_for_everyone()
del all_generated_labels
accelerator.wait_for_everyone()
with accelerator.local_main_process_first():
tmp_labels = load_all_codec_checkpoints(os.path.join(data_args.temporary_save_to_disk, split)).select(
range(len(vectorized_datasets[split]))
)
logger.info(f"Concatenating {split}: {tmp_labels} with {vectorized_datasets[split]}")
vectorized_datasets[split] = concatenate_datasets([vectorized_datasets[split], tmp_labels], axis=1)
accelerator.free_memory()
del generate_labels, all_lens
with accelerator.local_main_process_first():
# NOTE: filtering is done at the end because in the `datasets` library, caching audio files is done after most operations
# caching audio files is time and disk-space consuming, so we want to avoid it at all costs, especially for large (>1Kh) audio datasets.
# That's also why we avoid to concat the processed datasets (vectorized_datasets) with the audio column present in raw_datasets.
def is_audio_in_length_range(length):
return length > min_target_length and length < max_target_length
# filter data that is shorter than min_target_length
vectorized_datasets = vectorized_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["target_length"],
)
if description_column_name is not None and data_args.max_description_token_length is not None:
with accelerator.local_main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_description_token_length,
num_proc=num_workers,
input_columns=["input_ids"],
)
if data_args.max_prompt_token_length is not None:
with accelerator.local_main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_prompt_token_length,
num_proc=num_workers,
input_columns=["prompt_input_ids"],
)
if data_args.save_to_disk is not None and not dataset_was_precomputed:
if accelerator.is_main_process:
vectorized_datasets.save_to_disk(
data_args.save_to_disk,
num_proc=min(data_args.preprocessing_num_workers, len(vectorized_datasets["eval"]) - 1),
)
accelerator.wait_for_everyone()
logger.info(f"Dataset saved at {data_args.save_to_disk}")
audio_max_length = None
if padding == "max_length":
audio_max_length = max(vectorized_datasets["train"]["target_length"])
with accelerator.local_main_process_first():
max_sample = vectorized_datasets["train"].filter(
lambda x: x == audio_max_length,
num_proc=num_workers,
input_columns=["target_length"],
)
audio_max_length = max([len(l[0]) for l in max_sample["labels"]])
if description_column_name is not None and data_args.max_description_token_length is not None:
with accelerator.local_main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_description_token_length,
num_proc=num_workers,
input_columns=["input_ids"],
)
if data_args.max_prompt_token_length is not None:
with accelerator.local_main_process_first():
# filter description that is shorter than max_text_length
vectorized_datasets = vectorized_datasets.filter(
lambda x: len(x) < data_args.max_prompt_token_length,
num_proc=num_workers,
input_columns=["prompt_input_ids"],
)
if training_args.group_by_length:
# apply a simple heuristic to take into account audio and text lengths
def add_target_lengths(target_length, prompt, description):
return {"target_length": target_length + len(prompt) + len(description)}
with accelerator.local_main_process_first():
vectorized_datasets = vectorized_datasets.map(
add_target_lengths,
num_proc=num_workers,
input_columns=["target_length", "prompt_input_ids", "input_ids"],
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with ``args.preprocessing_only`` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only and data_args.save_to_disk is None:
raise ValueError(
"`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally."
)
elif data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
return
# 6. Next, we can prepare the training.
# Let's use word CLAP similary and WER metrics as our evaluation metrics,
def compute_metrics(
audios,
descriptions,
prompts,
device="cpu",
compute_clap_similarity_metric=False,
compute_noise_level_metric=False,
noise_level_to_compute_clean_wer=None,
):
results = {}
input_ids = descriptions
texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
audios = [a.float().cpu().numpy() for a in audios]
if compute_clap_similarity_metric:
clap_score = clap_similarity(
model_args.clap_model_name_or_path, texts, audios, device, input_sampling_rate=sampling_rate
)
results["clap"] = clap_score
si_sdr_measures = None
if compute_noise_level_metric:
si_sdr_measures = si_sdr(audios, device, input_sampling_rate=sampling_rate)
word_error, transcriptions, clean_word_error, noisy_word_error, percent_clean_samples = wer(
model_args.asr_model_name_or_path,
prompts,
audios,
device,
training_args.per_device_eval_batch_size,
sampling_rate,
noise_level_to_compute_clean_wer,
si_sdr_measures,
)
results["wer"] = word_error
if clean_word_error is not None:
results["clean_wer"] = clean_word_error
results["noisy_word_error"] = noisy_word_error
results["percent_clean_samples"] = percent_clean_samples
return results, texts, prompts, audios, transcriptions, si_sdr_measures
# Define Training Schedule
# Store some constants
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
train_batch_size = per_device_train_batch_size * accelerator.num_processes
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
if training_args.max_steps < 0:
num_epochs = int(training_args.num_train_epochs)
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
total_train_steps = steps_per_epoch * num_epochs
elif training_args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
total_train_steps = int(training_args.max_steps)
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_epochs = sys.maxsize
steps_per_epoch = total_train_steps
if training_args.eval_steps is None:
logger.info(f"eval_steps is not set, evaluating at the end of each epoch")
eval_steps = steps_per_epoch
else:
eval_steps = training_args.eval_steps
if training_args.eval_generation_steps is None:
eval_generation_steps = eval_steps
else:
eval_generation_steps = training_args.eval_generation_steps
# T5 doesn't support fp16
autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
# Define optimizer, LR scheduler, collator
optimizer = torch.optim.AdamW(
params=model.parameters(),
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
)
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
lr_scheduler = get_scheduler(
name=training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
num_training_steps=total_train_steps * accelerator.num_processes,
)
# Instantiate custom data collator
data_collator = DataCollatorParlerTTSWithPadding(
prompt_tokenizer=prompt_tokenizer,
description_tokenizer=description_tokenizer,
pad_to_multiple_of=data_args.pad_to_multiple_of,
padding=padding,
prompt_max_length=data_args.max_prompt_token_length,
description_max_length=data_args.max_description_token_length,
audio_max_length=audio_max_length,
)
# Prepare everything with accelerate
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
num_examples = total_train_steps * train_batch_size * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples}")
logger.info(" Instantaneous batch size per device =" f" {per_device_train_batch_size}")
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {total_train_steps}")
# ======================== Training ================================
train_time = 0
train_start = time.time()
steps_trained_progress_bar = tqdm(
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
)
continue_training = True
epochs_trained = 0
cur_step = 0
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
if accelerator.is_main_process:
if training_args.push_to_hub:
api = HfApi(token=training_args.hub_token)
# Create repo (repo_name from args or inferred)
repo_name = training_args.hub_model_id
if repo_name is None:
repo_name = Path(training_args.output_dir).absolute().name
repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
if "wandb" not in gitignore:
gitignore.write("wandb\n")
elif training_args.output_dir is not None:
os.makedirs(training_args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Now save everything to be able to create a single processor later
# make sure all processes wait until data is saved
# only the main process saves them
if accelerator.is_main_process:
# save feature extractor, tokenizer and config
if (
model_args.prompt_tokenizer_name is None
and model_args.description_tokenizer_name
or (model_args.prompt_tokenizer_name == model_args.description_tokenizer_name)
):
prompt_tokenizer.save_pretrained(training_args.output_dir)
else:
logger.warning(
f"Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer."
)
prompt_tokenizer.save_pretrained(training_args.output_dir)
feature_extractor.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
accelerator.wait_for_everyone()
if checkpoint is not None:
accelerator.load_state(checkpoint)
# Find num steps and epoch from saved state string pattern
pattern = r"checkpoint-(\d+)-epoch-(\d+)"
match = re.search(pattern, checkpoint)
cur_step = int(match.group(1))
epochs_trained = int(match.group(2))
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {cur_step}")
steps_trained_progress_bar.update(cur_step)
for epoch in range(0, epochs_trained):
with accelerator.local_main_process_first():
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
if training_args.max_steps < 0:
# we know exactly the number of steps per epoch, so can skip through the required number of batches
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
else:
# Currently we don't know how many steps we've taken in the current epoch
# So we just shuffle the dataset one extra time and start from a fresh epoch
# This is "good enough" for our purposes but not fully correct
resume_step = None
with accelerator.local_main_process_first():
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
else:
resume_step = None
gen_kwargs = {
"do_sample": model_args.do_sample,
"temperature": model_args.temperature,
"max_length": model_args.max_length,
# Because of the delayed pattern mask, generation might stop earlier because of unexpected behaviour
# on the first tokens of the codebooks that are delayed.
# This fix the issue.
"min_new_tokens": num_codebooks + 1,
}
# Define gradient update step fn
def train_step(
batch,
accelerator,
autocast_kwargs,
num_items_in_batch,
gradient_accumulation_steps,
):
if mixed_precision == "fp16":
# fp16 doesn't work with T5-like models
with accelerator.autocast(autocast_handler=autocast_kwargs):
if training_args.parallel_mode.value != "distributed":
encoder_outputs = model.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
else:
encoder_outputs = model.module.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
# we optionnally project last_hidden_state to avoid recomputing every time
encoder_hidden_states = encoder_outputs.last_hidden_state
if (
config.text_encoder.hidden_size != config.decoder.hidden_size
and config.decoder.cross_attention_hidden_size is None
):
encoder_hidden_states = (
model.enc_to_dec_proj(encoder_hidden_states)
if training_args.parallel_mode.value != "distributed"
else model.module.enc_to_dec_proj(encoder_hidden_states)
)
if batch.get("attention_mask", None) is not None:
encoder_hidden_states = encoder_hidden_states * batch.get("attention_mask", None)[..., None]
encoder_outputs.last_hidden_state = encoder_hidden_states
batch["encoder_outputs"] = encoder_outputs
outputs = model(**batch, loss_reduction="sum")
# CE (data) loss
ce_loss = (outputs.loss * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch
metrics = {"loss": ce_loss}
# per CE loss
per_codebook_losses = outputs.per_codebook_losses
metrics.update({f"codebook_{i}_loss": ((l * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch) for (i,l) in enumerate(per_codebook_losses)})
return ce_loss, metrics
# Define eval fn
def eval_step(
batch,
accelerator,
autocast_kwargs,
):
eval_model = model if not training_args.torch_compile else model._orig_mod
if mixed_precision == "fp16":
# fp16 doesn't work with T5-like models
with accelerator.autocast(autocast_handler=autocast_kwargs):
if training_args.parallel_mode.value != "distributed":
encoder_outputs = model.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
else:
encoder_outputs = model.module.text_encoder(
input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
)
# we optionnally project last_hidden_state to avoid recomputing every time
encoder_hidden_states = encoder_outputs.last_hidden_state
if (
config.text_encoder.hidden_size != config.decoder.hidden_size
and config.decoder.cross_attention_hidden_size is None
):
encoder_hidden_states = (
model.enc_to_dec_proj(encoder_hidden_states)
if training_args.parallel_mode.value != "distributed"
else model.module.enc_to_dec_proj(encoder_hidden_states)
)
if batch.get("attention_mask", None) is not None:
encoder_hidden_states = encoder_hidden_states * batch.get("attention_mask", None)[..., None]
encoder_outputs.last_hidden_state = encoder_hidden_states
batch["encoder_outputs"] = encoder_outputs
with torch.no_grad():
outputs = eval_model(**batch)
# CE (data) loss
ce_loss = outputs.loss
metrics = {"loss": ce_loss}
# per CE loss
per_codebook_losses = outputs.per_codebook_losses
metrics.update({f"codebook_{i}_loss": l for (i,l) in enumerate(per_codebook_losses)})
return metrics
def generate_step(batch, accelerator):
batch.pop("decoder_attention_mask", None)
eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=True)
if training_args.torch_compile:
# if the model is compiled, we use the original model bc compile is not compatible with .generate
eval_model = model._orig_mod
# since we've might have loaded the weights in fp32, we have to autocast to ensure FA2 weights are in half-precision.
# with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=(attn_implementation=="flash_attention_2"))):
output_audios = eval_model.generate(**batch, **gen_kwargs)
output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
return output_audios
model.train()
total_batched_samples = resume_step if resume_step is not None else 0
for epoch in range(epochs_trained, num_epochs):
with accelerator.local_main_process_first():
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
sampler = None
if training_args.group_by_length:
sampler = LengthGroupedSampler(train_batch_size, lengths=vectorized_datasets["train"]["target_length"])
train_dataloader = DataLoader(
vectorized_datasets["train"],
collate_fn=data_collator,
batch_size=per_device_train_batch_size,
sampler=sampler,
shuffle=not training_args.group_by_length,
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
train_dataloader = accelerator.prepare(train_dataloader)
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
train_dataloader.dataset.set_epoch(epoch)
if resume_step is not None:
# Skip the first N batches in the dataloader when resuming from a checkpoint
logger.info(f" Skip first {resume_step} batches")
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
resume_step = None
accelerator.wait_for_everyone()
# We chunkify the epoch iterator into gradient accumulation steps `n` batches
train_iterator = iter(train_dataloader)
num_steps_in_epoch = len(train_dataloader)
remainder = num_steps_in_epoch % gradient_accumulation_steps
remainder = remainder if remainder != 0 else gradient_accumulation_steps
total_updates = math.ceil(num_steps_in_epoch / gradient_accumulation_steps)
update_step = -1
for _ in range(total_updates):
update_step += 1
# preload the total batch per step
batch_samples = []
num_batches_in_step = gradient_accumulation_steps if update_step != (total_updates - 1) else remainder
for _ in range(num_batches_in_step):
batch_samples += [next(train_iterator)]
# get num items in batch - if different than BOS and than -100
num_items_in_batch = sum([(batch["labels"].ne(audio_encoder_bos_token_id) | batch["labels"].ne(-100) | batch["labels"].ne(audio_encoder_eos_token_id)).sum((0,1))[0] for batch in batch_samples])
num_items_in_batch = accelerator.gather(num_items_in_batch).sum().item()
# losses = []
for i,batch in enumerate(batch_samples):
total_batched_samples += 1
ctx = model.no_sync if (i < len(batch_samples) - 1 and accelerator.num_processes > 1) else contextlib.nullcontext
with ctx():
loss, train_metric = train_step(batch, accelerator, autocast_kwargs, num_items_in_batch, gradient_accumulation_steps)
accelerator.backward(loss)
# losses.append(loss.detach())
grad_norm = accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# The accelerator has performed an optimization step behind the scenes
steps_trained_progress_bar.update(1)
cur_step += 1
# losses = accelerator.gather(sum(losses)).sum().item() / (accelerator.num_processes * gradient_accumulation_steps)
if cur_step % training_args.logging_steps == 0:
steps_trained_progress_bar.write(
f"Step... ({cur_step} / {total_train_steps} | Loss:"
f" {train_metric['loss']}, Learning Rate:"
f" {lr_scheduler.get_last_lr()[0]})"
)
train_metric["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
log_metric(
accelerator,
metrics=train_metric,
learning_rate=lr_scheduler.get_last_lr()[0],
train_time=train_time + time.time() - train_start,
step=cur_step,
epoch=epoch,
prefix="train",
)
# save checkpoint and weights after each save_steps and at the end of training
if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
# safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
# https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
rotate_checkpoints(
training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger
)
if cur_step == total_train_steps:
# un-wrap student model for save
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
api.upload_folder(
repo_id=repo_id,
folder_path=training_args.output_dir,
commit_message=f"Saving train state of step {cur_step}",
run_as_future=True,
)
accelerator.wait_for_everyone()
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
train_time += time.time() - train_start
# ======================== Evaluating ==============================
model.eval()
eval_metrics = []
eval_preds = []
eval_descriptions = []
eval_prompts = []
eval_start = time.time()
# release training input batch
batch = release_memory(batch)
validation_dataloader = DataLoader(
vectorized_datasets["eval"],
collate_fn=data_collator,
batch_size=per_device_eval_batch_size,
drop_last=False,
num_workers=training_args.eval_dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
validation_dataloader = accelerator.prepare(validation_dataloader)
for batch in tqdm(
validation_dataloader,
desc=f"Evaluating - Inference ...",
position=2,
disable=not accelerator.is_local_main_process,
):
# Model forward
eval_metric = eval_step(batch, accelerator, autocast_kwargs)
eval_metric = accelerator.gather_for_metrics(eval_metric)
eval_metric = {key: val.unsqueeze(0) if val.ndim == 0 else val for (key,val) in eval_metric.items()}
eval_metrics.append(eval_metric)
if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
validation_dataloader = DataLoader(
vectorized_datasets["eval"],
collate_fn=data_collator,
batch_size=per_device_eval_batch_size,
drop_last=False,
num_workers=training_args.eval_dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
validation_dataloader = accelerator.prepare(validation_dataloader)
# generation
for batch in tqdm(
validation_dataloader,
desc=f"Evaluating - Generation ...",
position=2,
disable=not accelerator.is_local_main_process,
):
generated_audios = generate_step(batch, accelerator)
# Gather all predictions and targets
generated_audios, input_ids, prompts = accelerator.pad_across_processes(
(generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
)
generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
(generated_audios, input_ids, prompts)
)
eval_preds.extend(generated_audios.to("cpu"))
eval_descriptions.extend(input_ids.to("cpu"))
eval_prompts.extend(prompts.to("cpu"))
eval_time = time.time() - eval_start
# normalize eval metrics
eval_metrics = {
key: torch.mean(torch.cat([d[key] for d in eval_metrics])).to("cpu") for key in eval_metrics[0]
}
# compute metrics
metrics_desc = ""
if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
if accelerator.is_local_main_process:
(
metric_values,
pred_descriptions,
pred_prompts,
audios,
transcriptions,
si_sdr_measures,
) = compute_metrics(
eval_preds,
eval_descriptions,
eval_prompts,
accelerator.device,
training_args.compute_clap_similarity_metric,
training_args.compute_noise_level_metric,
training_args.noise_level_to_compute_clean_wer,
)
eval_metrics.update(metric_values)
metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
if "wandb" in training_args.report_to:
log_pred(
accelerator,
pred_descriptions,
pred_prompts,
transcriptions,
audios,
si_sdr_measures,
sampling_rate=sampling_rate,
step=cur_step,
prefix="eval",
)
accelerator.wait_for_everyone()
# Print metrics and update progress bar
if accelerator.is_local_main_process:
steps_trained_progress_bar.write(
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
f" {metrics_desc})"
)
log_metric(
accelerator,
metrics=eval_metrics,
train_time=eval_time,
step=cur_step,
epoch=epoch,
prefix="eval",
)
# release eval batch and relax metrics
eval_metrics, eval_preds, eval_descriptions, eval_prompts, batch, eval_metric = release_memory(
eval_metrics, eval_preds, eval_descriptions, eval_prompts, batch, eval_metric
)
if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
generated_audios, input_ids, prompts = release_memory(generated_audios, input_ids, prompts)
# train mode
model.train()
# flush the train metrics
train_start = time.time()
# break condition
if cur_step == total_train_steps:
continue_training = False
break
if not continue_training:
break
accelerator.end_training()
if __name__ == "__main__":
main()