Spaces:
Running
on
Zero
Running
on
Zero
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments | |
import torch | |
# load data | |
dataset = load_dataset("OpenSound/CapSpeech") | |
# load model | |
model_name = "bert-base-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=1) | |
# special tokens | |
with open("events.txt", "r") as f: | |
events = [line.strip() for line in f] | |
events = ["<"+event.lower().replace(" ", "_")+">" for event in events] | |
events.append("<B_start>") | |
events.append("<B_end>") | |
events.append("<I_start>") | |
events.append("<I_end>") | |
special_tokens_dict = {"additional_special_tokens": events} | |
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) | |
print(f"Added {num_added_toks} special tokens.") | |
model.resize_token_embeddings(len(tokenizer)) | |
# data preprocessing | |
def tokenize_fn(example): | |
# You can change the delimiter if needed (e.g., "[SEP]", " | ", or nothing) | |
combined = example["text"] + " [SEP] " + example["caption"] | |
return tokenizer(combined, padding="max_length", truncation=True, max_length=400) | |
tokenized_dataset = dataset.map(tokenize_fn) | |
tokenized_dataset = tokenized_dataset.rename_column("speech_duration", "labels") | |
tokenized_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"]) | |
# hyperparameters | |
training_args = TrainingArguments( | |
output_dir="./duration_predictor", | |
per_device_train_batch_size=256, | |
num_train_epochs=2, | |
learning_rate=1e-4, | |
warmup_steps=1000, | |
save_strategy="steps", | |
save_steps=3000, | |
evaluation_strategy="epoch", | |
logging_dir="./logs_dp", | |
) | |
# training | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train_PT"], | |
eval_dataset=tokenized_dataset["validation_PT"], | |
) | |
trainer.train() | |
# test | |
preds = trainer.predict(tokenized_dataset["test"]) | |
print("Predictions:", preds.predictions[:10]) | |
print("Ground Truth:", preds.label_ids[:10]) | |