OpenSound's picture
Upload 518 files
dd9600d verified
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Optional
import math
from torch.utils.checkpoint import checkpoint
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from einops import rearrange
# from x_transformers.x_transformers import apply_rotary_pos_emb
from inspect import isfunction
from torch.amp import autocast
# raw wav to mel spec
class MelSpec(torch.nn.Module):
def __init__(self, target_sample_rate=24000, filter_length=1024, hop_length=256, n_mel_channels=100, f_min=0, f_max=12000, normalize=False, power=1, norm=None, center=True,):
super().__init__()
self.frame_length = filter_length
self.hop_length = hop_length
self.mel = torchaudio.transforms.MelSpectrogram(
sample_rate=target_sample_rate,
n_fft=filter_length,
win_length=filter_length,
hop_length=hop_length,
center=False,
power=1.0,
norm="slaney",
n_mels=n_mel_channels,
mel_scale="slaney",
f_min=0,
f_max=12000
)
@torch.no_grad()
def forward(self, x, target_length=None):
if len(x.shape) == 3:
x = rearrange(x, 'b 1 nw -> b nw')
assert len(x.shape) == 2
x = F.pad(x, ((self.frame_length - self.hop_length) // 2,
(self.frame_length - self.hop_length) // 2), "reflect")
mel = self.mel(x)
target_length = mel.shape[-1] if target_length is None else target_length
logmel = torch.zeros(mel.shape[0], mel.shape[1], target_length).to(mel.device)
logmel[:, :, :mel.shape[2]] = mel
logmel = torch.log(torch.clamp(logmel, min=1e-5))
return logmel
# class MelSpec(nn.Module):
# def __init__(
# self,
# filter_length=1024,
# hop_length=256,
# win_length=1024,
# n_mel_channels=100,
# target_sample_rate=24_000,
# normalize=False,
# power=2,
# norm='slaney',
# center=True,
# mel_scale='slaney',
# ):
# super().__init__()
# self.n_mel_channels = n_mel_channels
# self.mel_stft = torchaudio.transforms.MelSpectrogram(
# sample_rate=target_sample_rate,
# n_fft=filter_length,
# win_length=win_length,
# hop_length=hop_length,
# n_mels=n_mel_channels,
# power=power,
# center=center,
# normalized=normalize,
# norm=norm,
# mel_scale=mel_scale
# )
# self.register_buffer('dummy', torch.tensor(0), persistent=False)
# def forward(self, inp):
# if len(inp.shape) == 3:
# inp = rearrange(inp, 'b 1 nw -> b nw')
# assert len(inp.shape) == 2
# if self.dummy.device != inp.device:
# self.to(inp.device)
# mel = self.mel_stft(inp)
# mel = mel.clamp(min=1e-5).log()
# return mel
# sinusoidal position embedding
class SinusPositionEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
# convolutional position embedding
class ConvPositionEmbedding(nn.Module):
def __init__(self, dim, kernel_size=31, groups=16):
super().__init__()
assert kernel_size % 2 != 0
self.conv1d = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
)
def forward(self, x: float['b n d'], mask: bool['b n'] | None = None):
if mask is not None:
mask = mask[..., None]
x = x.masked_fill(~mask, 0.)
x = rearrange(x, 'b n d -> b d n')
x = self.conv1d(x)
out = rearrange(x, 'b d n -> b n d')
if mask is not None:
out = out.masked_fill(~mask, 0.)
return out
# rotary positional embedding related
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.):
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
theta *= theta_rescale_factor ** (dim / (dim - 2))
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return torch.cat([freqs_cos, freqs_sin], dim=-1)
def get_pos_embed_indices(start, length, max_pos, scale=1.):
# length = length if isinstance(length, int) else length.max()
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
pos = start.unsqueeze(1) + (
torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) *
scale.unsqueeze(1)).long()
# avoid extra long error.
pos = torch.where(pos < max_pos, pos, max_pos - 1)
return pos
# Global Response Normalization layer (Instance Normalization ?)
class GRN(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
class ConvNeXtV2Block(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
dilation: int = 1,
):
super().__init__()
padding = (dilation * (7 - 1)) // 2
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding,
groups=dim, dilation=dilation) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim)
# pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(intermediate_dim)
self.pwconv2 = nn.Linear(intermediate_dim, dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = x.transpose(1, 2) # b n d -> b d n
x = self.dwconv(x)
x = x.transpose(1, 2) # b d n -> b n d
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
return residual + x
# AdaLayerNormZero
# return with modulated x for attn input, and params for later mlp modulation
class AdaLayerNormZero(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 6)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb=None):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
# AdaLayerNormZero for final layer
# return only with modulated x for attn input, cuz no more mlp modulation
class AdaLayerNormZero_Final(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 2)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
# FeedForward
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, dropout=0.,
approximate: str = 'none'):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
activation = nn.GELU(approximate=approximate)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
activation
)
self.ff = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.ff(x)
# Attention with possible joint part
# modified from diffusers/src/diffusers/models/attention_processor.py
class Attention(nn.Module):
def __init__(
self,
processor: AttnProcessor,
dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
qk_norm: bool = True,
# context_dim: Optional[int] = None, # if not None -> joint attention
# context_pre_only=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.processor = processor
self.dim = dim
self.heads = heads
self.inner_dim = dim_head * heads
self.dropout = dropout
# self.context_dim = context_dim
# self.context_pre_only = context_pre_only
self.to_q = nn.Linear(dim, self.inner_dim)
self.to_k = nn.Linear(dim, self.inner_dim)
self.to_v = nn.Linear(dim, self.inner_dim)
if qk_norm is None:
self.q_norm = None
self.k_norm = None
elif qk_norm is True:
self.q_norm = nn.LayerNorm(dim_head, eps=1e-6)
self.k_norm = nn.LayerNorm(dim_head, eps=1e-6)
else:
raise ValueError(f"Unimplemented qk_norm: {qk_norm}")
# if self.context_dim is not None:
# self.to_k_c = nn.Linear(context_dim, self.inner_dim)
# self.to_v_c = nn.Linear(context_dim, self.inner_dim)
# if self.context_pre_only is not None:
# self.to_q_c = nn.Linear(context_dim, self.inner_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, dim))
self.to_out.append(nn.Dropout(dropout))
# if self.context_pre_only is not None and not self.context_pre_only:
# self.to_out_c = nn.Linear(self.inner_dim, dim)
def forward(self, x, c=None, mask=None,
rope=None, c_rope=None, ) -> torch.Tensor:
# if c is not None:
# return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope)
# else:
# return self.processor(self, x, mask = mask, rope = rope)
return self.processor(self, x=x, c=c,
mask=mask, rope=rope, c_rope=c_rope)
# Attention processor
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None):
def default(val, d):
return val if val is not None else (d() if isfunction(d) else d)
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool))
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool))
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j')
return attn_mask
def rotate_half(x):
x = rearrange(x, '... (d r) -> ... d r', r = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d r -> ... (d r)')
@autocast('cuda', enabled = False)
def apply_rotary_pos_emb(t, freqs, scale = 1):
rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype
freqs = freqs[:, -seq_len:, :]
scale = scale[:, -seq_len:, :] if isinstance(scale, torch.Tensor) else scale
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
out = torch.cat((t, t_unrotated), dim = -1)
return out.type(orig_dtype)
class AttnProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
x: float['b n d'], # noised input x
mask: bool['b n'] | None = None,
rope=None, # rotary position embedding
c=None, # context
c_rope=None, # context rope
) -> torch.FloatTensor:
batch_size = x.shape[0]
if c is None:
c = x
# `sample` projections.
query = attn.to_q(x)
key = attn.to_k(c)
value = attn.to_v(c)
# attention
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.q_norm is not None:
query = attn.q_norm(query)
if attn.k_norm is not None:
key = attn.k_norm(key)
# apply rotary position embedding
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.0) if xpos_scale is not None else (1.0, 1.0)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
# mask. e.g. inference got a batch with different target durations, mask out the padding
# if mask is not None:
# attn_mask = mask
# attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
# attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
# else:
# attn_mask = None
if mask is not None:
attn_mask = create_mask(x.shape, c.shape,
x.device, None, mask)
else:
attn_mask = None
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask,
dropout_p=0.0, is_causal=False)
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
x = x.to(query.dtype)
# linear proj
x = attn.to_out[0](x)
# dropout
x = attn.to_out[1](x)
# if mask is not None:
# mask = rearrange(mask, 'b n -> b n 1')
# x = x.masked_fill(~mask, 0.)
return x
# DiT Block
class DiTBlock(nn.Module):
def __init__(self, dim, heads, dim_head,
ff_mult=4, dropout=0.1,
qk_norm=False,
use_checkpoint=True):
super().__init__()
self.attn_norm = AdaLayerNormZero(dim)
self.attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
qk_norm=qk_norm,
)
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, mult=ff_mult,
dropout=dropout, approximate="tanh")
self.use_checkpoint = checkpoint
def forward(self, x, t, mask=None, rope=None):
if self.use_checkpoint:
return checkpoint(self._forward, x, t, mask, rope)
else:
return self._forward(x, t, mask, rope)
# x: noised input, t: time embedding
def _forward(self, x, t, mask=None, rope=None):
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
# attention
attn_output = self.attn(x=norm, mask=mask, rope=rope)
# process attention output for input x
x = x + gate_msa.unsqueeze(1) * attn_output
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm)
x = x + gate_mlp.unsqueeze(1) * ff_output
return x
# Cross DiT Block
class CrossDiTBlock(nn.Module):
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1,
qk_norm=False,
use_checkpoint=True, skip=False):
super().__init__()
self.attn_norm = AdaLayerNormZero(dim)
self.attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
qk_norm=qk_norm,
)
self.cross_norm = nn.LayerNorm(dim, eps=1e-6)
self.context_norm = nn.LayerNorm(dim, eps=1e-6)
self.cross_attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
qk_norm=qk_norm,
)
# Zero out the weight
nn.init.constant_(self.cross_attn.to_out[0].weight, 0.0)
# Zero out the bias if it exists
if self.cross_attn.to_out[0].bias is not None:
nn.init.constant_(self.cross_attn.to_out[0].bias, 0.0)
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
self.use_checkpoint = checkpoint
self.skip = skip
if self.skip:
self.skip_norm = nn.LayerNorm(dim*2, eps=1e-6)
self.skip_linear = nn.Linear(dim*2, dim)
def forward(self, x, t, mask=None, rope=None,
context=None, context_mask=None, skip=None):
if self.use_checkpoint:
return checkpoint(self._forward, x, t, mask, rope, context, context_mask, skip, use_reentrant=False)
else:
return self._forward(x, t, mask, rope, context, context_mask, skip)
def _forward(self, x, t, mask=None, rope=None,
context=None, context_mask=None, skip=None):
if self.skip:
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
# attention
attn_output = self.attn(x=norm, mask=mask, rope=rope)
# process attention output for input x
x = x + gate_msa.unsqueeze(1) * attn_output
# process cross attention
x = x + self.cross_attn(x=self.cross_norm(x), c=self.context_norm(context),
mask=context_mask, rope=None)
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm)
x = x + gate_mlp.unsqueeze(1) * ff_output
return x
# time step conditioning embedding
class TimestepEmbedding(nn.Module):
def __init__(self, dim, freq_embed_dim=256):
super().__init__()
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
self.time_mlp = nn.Sequential(
nn.Linear(freq_embed_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim)
)
def forward(self, timestep: float['b']):
time_hidden = self.time_embed(timestep)
time = self.time_mlp(time_hidden) # b d
return time