Spaces:
Running
on
Zero
Running
on
Zero
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
from typing import Optional | |
import math | |
from torch.utils.checkpoint import checkpoint | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
from einops import rearrange | |
# from x_transformers.x_transformers import apply_rotary_pos_emb | |
from inspect import isfunction | |
from torch.amp import autocast | |
# raw wav to mel spec | |
class MelSpec(torch.nn.Module): | |
def __init__(self, target_sample_rate=24000, filter_length=1024, hop_length=256, n_mel_channels=100, f_min=0, f_max=12000, normalize=False, power=1, norm=None, center=True,): | |
super().__init__() | |
self.frame_length = filter_length | |
self.hop_length = hop_length | |
self.mel = torchaudio.transforms.MelSpectrogram( | |
sample_rate=target_sample_rate, | |
n_fft=filter_length, | |
win_length=filter_length, | |
hop_length=hop_length, | |
center=False, | |
power=1.0, | |
norm="slaney", | |
n_mels=n_mel_channels, | |
mel_scale="slaney", | |
f_min=0, | |
f_max=12000 | |
) | |
def forward(self, x, target_length=None): | |
if len(x.shape) == 3: | |
x = rearrange(x, 'b 1 nw -> b nw') | |
assert len(x.shape) == 2 | |
x = F.pad(x, ((self.frame_length - self.hop_length) // 2, | |
(self.frame_length - self.hop_length) // 2), "reflect") | |
mel = self.mel(x) | |
target_length = mel.shape[-1] if target_length is None else target_length | |
logmel = torch.zeros(mel.shape[0], mel.shape[1], target_length).to(mel.device) | |
logmel[:, :, :mel.shape[2]] = mel | |
logmel = torch.log(torch.clamp(logmel, min=1e-5)) | |
return logmel | |
# class MelSpec(nn.Module): | |
# def __init__( | |
# self, | |
# filter_length=1024, | |
# hop_length=256, | |
# win_length=1024, | |
# n_mel_channels=100, | |
# target_sample_rate=24_000, | |
# normalize=False, | |
# power=2, | |
# norm='slaney', | |
# center=True, | |
# mel_scale='slaney', | |
# ): | |
# super().__init__() | |
# self.n_mel_channels = n_mel_channels | |
# self.mel_stft = torchaudio.transforms.MelSpectrogram( | |
# sample_rate=target_sample_rate, | |
# n_fft=filter_length, | |
# win_length=win_length, | |
# hop_length=hop_length, | |
# n_mels=n_mel_channels, | |
# power=power, | |
# center=center, | |
# normalized=normalize, | |
# norm=norm, | |
# mel_scale=mel_scale | |
# ) | |
# self.register_buffer('dummy', torch.tensor(0), persistent=False) | |
# def forward(self, inp): | |
# if len(inp.shape) == 3: | |
# inp = rearrange(inp, 'b 1 nw -> b nw') | |
# assert len(inp.shape) == 2 | |
# if self.dummy.device != inp.device: | |
# self.to(inp.device) | |
# mel = self.mel_stft(inp) | |
# mel = mel.clamp(min=1e-5).log() | |
# return mel | |
# sinusoidal position embedding | |
class SinusPositionEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x, scale=1000): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
# convolutional position embedding | |
class ConvPositionEmbedding(nn.Module): | |
def __init__(self, dim, kernel_size=31, groups=16): | |
super().__init__() | |
assert kernel_size % 2 != 0 | |
self.conv1d = nn.Sequential( | |
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2), | |
nn.Mish(), | |
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2), | |
nn.Mish(), | |
) | |
def forward(self, x: float['b n d'], mask: bool['b n'] | None = None): | |
if mask is not None: | |
mask = mask[..., None] | |
x = x.masked_fill(~mask, 0.) | |
x = rearrange(x, 'b n d -> b d n') | |
x = self.conv1d(x) | |
out = rearrange(x, 'b d n -> b n d') | |
if mask is not None: | |
out = out.masked_fill(~mask, 0.) | |
return out | |
# rotary positional embedding related | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.): | |
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning | |
# has some connection to NTK literature | |
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ | |
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py | |
theta *= theta_rescale_factor ** (dim / (dim - 2)) | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cos = torch.cos(freqs) # real part | |
freqs_sin = torch.sin(freqs) # imaginary part | |
return torch.cat([freqs_cos, freqs_sin], dim=-1) | |
def get_pos_embed_indices(start, length, max_pos, scale=1.): | |
# length = length if isinstance(length, int) else length.max() | |
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar | |
pos = start.unsqueeze(1) + ( | |
torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * | |
scale.unsqueeze(1)).long() | |
# avoid extra long error. | |
pos = torch.where(pos < max_pos, pos, max_pos - 1) | |
return pos | |
# Global Response Normalization layer (Instance Normalization ?) | |
class GRN(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, dim)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=1, keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py | |
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108 | |
class ConvNeXtV2Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
dilation: int = 1, | |
): | |
super().__init__() | |
padding = (dilation * (7 - 1)) // 2 | |
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, | |
groups=dim, dilation=dilation) # depthwise conv | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, intermediate_dim) | |
# pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.grn = GRN(intermediate_dim) | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
residual = x | |
x = x.transpose(1, 2) # b n d -> b d n | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # b d n -> b n d | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.grn(x) | |
x = self.pwconv2(x) | |
return residual + x | |
# AdaLayerNormZero | |
# return with modulated x for attn input, and params for later mlp modulation | |
class AdaLayerNormZero(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 6) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb=None): | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
# AdaLayerNormZero for final layer | |
# return only with modulated x for attn input, cuz no more mlp modulation | |
class AdaLayerNormZero_Final(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 2) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb): | |
emb = self.linear(self.silu(emb)) | |
scale, shift = torch.chunk(emb, 2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return x | |
# FeedForward | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, dropout=0., | |
approximate: str = 'none'): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
activation = nn.GELU(approximate=approximate) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
activation | |
) | |
self.ff = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.ff(x) | |
# Attention with possible joint part | |
# modified from diffusers/src/diffusers/models/attention_processor.py | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
processor: AttnProcessor, | |
dim: int, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
qk_norm: bool = True, | |
# context_dim: Optional[int] = None, # if not None -> joint attention | |
# context_pre_only=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.processor = processor | |
self.dim = dim | |
self.heads = heads | |
self.inner_dim = dim_head * heads | |
self.dropout = dropout | |
# self.context_dim = context_dim | |
# self.context_pre_only = context_pre_only | |
self.to_q = nn.Linear(dim, self.inner_dim) | |
self.to_k = nn.Linear(dim, self.inner_dim) | |
self.to_v = nn.Linear(dim, self.inner_dim) | |
if qk_norm is None: | |
self.q_norm = None | |
self.k_norm = None | |
elif qk_norm is True: | |
self.q_norm = nn.LayerNorm(dim_head, eps=1e-6) | |
self.k_norm = nn.LayerNorm(dim_head, eps=1e-6) | |
else: | |
raise ValueError(f"Unimplemented qk_norm: {qk_norm}") | |
# if self.context_dim is not None: | |
# self.to_k_c = nn.Linear(context_dim, self.inner_dim) | |
# self.to_v_c = nn.Linear(context_dim, self.inner_dim) | |
# if self.context_pre_only is not None: | |
# self.to_q_c = nn.Linear(context_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(self.inner_dim, dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# if self.context_pre_only is not None and not self.context_pre_only: | |
# self.to_out_c = nn.Linear(self.inner_dim, dim) | |
def forward(self, x, c=None, mask=None, | |
rope=None, c_rope=None, ) -> torch.Tensor: | |
# if c is not None: | |
# return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope) | |
# else: | |
# return self.processor(self, x, mask = mask, rope = rope) | |
return self.processor(self, x=x, c=c, | |
mask=mask, rope=rope, c_rope=c_rope) | |
# Attention processor | |
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None): | |
def default(val, d): | |
return val if val is not None else (d() if isfunction(d) else d) | |
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device | |
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool)) | |
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool)) | |
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j') | |
return attn_mask | |
def rotate_half(x): | |
x = rearrange(x, '... (d r) -> ... d r', r = 2) | |
x1, x2 = x.unbind(dim = -1) | |
x = torch.stack((-x2, x1), dim = -1) | |
return rearrange(x, '... d r -> ... (d r)') | |
def apply_rotary_pos_emb(t, freqs, scale = 1): | |
rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype | |
freqs = freqs[:, -seq_len:, :] | |
scale = scale[:, -seq_len:, :] if isinstance(scale, torch.Tensor) else scale | |
if t.ndim == 4 and freqs.ndim == 3: | |
freqs = rearrange(freqs, 'b n d -> b 1 n d') | |
# partial rotary embeddings, Wang et al. GPT-J | |
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] | |
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) | |
out = torch.cat((t, t_unrotated), dim = -1) | |
return out.type(orig_dtype) | |
class AttnProcessor: | |
def __init__(self): | |
pass | |
def __call__( | |
self, | |
attn: Attention, | |
x: float['b n d'], # noised input x | |
mask: bool['b n'] | None = None, | |
rope=None, # rotary position embedding | |
c=None, # context | |
c_rope=None, # context rope | |
) -> torch.FloatTensor: | |
batch_size = x.shape[0] | |
if c is None: | |
c = x | |
# `sample` projections. | |
query = attn.to_q(x) | |
key = attn.to_k(c) | |
value = attn.to_v(c) | |
# attention | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.q_norm is not None: | |
query = attn.q_norm(query) | |
if attn.k_norm is not None: | |
key = attn.k_norm(key) | |
# apply rotary position embedding | |
if rope is not None: | |
freqs, xpos_scale = rope | |
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.0) if xpos_scale is not None else (1.0, 1.0) | |
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) | |
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) | |
# mask. e.g. inference got a batch with different target durations, mask out the padding | |
# if mask is not None: | |
# attn_mask = mask | |
# attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n') | |
# attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) | |
# else: | |
# attn_mask = None | |
if mask is not None: | |
attn_mask = create_mask(x.shape, c.shape, | |
x.device, None, mask) | |
else: | |
attn_mask = None | |
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, | |
dropout_p=0.0, is_causal=False) | |
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
x = x.to(query.dtype) | |
# linear proj | |
x = attn.to_out[0](x) | |
# dropout | |
x = attn.to_out[1](x) | |
# if mask is not None: | |
# mask = rearrange(mask, 'b n -> b n 1') | |
# x = x.masked_fill(~mask, 0.) | |
return x | |
# DiT Block | |
class DiTBlock(nn.Module): | |
def __init__(self, dim, heads, dim_head, | |
ff_mult=4, dropout=0.1, | |
qk_norm=False, | |
use_checkpoint=True): | |
super().__init__() | |
self.attn_norm = AdaLayerNormZero(dim) | |
self.attn = Attention( | |
processor=AttnProcessor(), | |
dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
dropout=dropout, | |
qk_norm=qk_norm, | |
) | |
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, mult=ff_mult, | |
dropout=dropout, approximate="tanh") | |
self.use_checkpoint = checkpoint | |
def forward(self, x, t, mask=None, rope=None): | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, t, mask, rope) | |
else: | |
return self._forward(x, t, mask, rope) | |
# x: noised input, t: time embedding | |
def _forward(self, x, t, mask=None, rope=None): | |
# pre-norm & modulation for attention input | |
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t) | |
# attention | |
attn_output = self.attn(x=norm, mask=mask, rope=rope) | |
# process attention output for input x | |
x = x + gate_msa.unsqueeze(1) * attn_output | |
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm) | |
x = x + gate_mlp.unsqueeze(1) * ff_output | |
return x | |
# Cross DiT Block | |
class CrossDiTBlock(nn.Module): | |
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, | |
qk_norm=False, | |
use_checkpoint=True, skip=False): | |
super().__init__() | |
self.attn_norm = AdaLayerNormZero(dim) | |
self.attn = Attention( | |
processor=AttnProcessor(), | |
dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
dropout=dropout, | |
qk_norm=qk_norm, | |
) | |
self.cross_norm = nn.LayerNorm(dim, eps=1e-6) | |
self.context_norm = nn.LayerNorm(dim, eps=1e-6) | |
self.cross_attn = Attention( | |
processor=AttnProcessor(), | |
dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
dropout=dropout, | |
qk_norm=qk_norm, | |
) | |
# Zero out the weight | |
nn.init.constant_(self.cross_attn.to_out[0].weight, 0.0) | |
# Zero out the bias if it exists | |
if self.cross_attn.to_out[0].bias is not None: | |
nn.init.constant_(self.cross_attn.to_out[0].bias, 0.0) | |
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh") | |
self.use_checkpoint = checkpoint | |
self.skip = skip | |
if self.skip: | |
self.skip_norm = nn.LayerNorm(dim*2, eps=1e-6) | |
self.skip_linear = nn.Linear(dim*2, dim) | |
def forward(self, x, t, mask=None, rope=None, | |
context=None, context_mask=None, skip=None): | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, t, mask, rope, context, context_mask, skip, use_reentrant=False) | |
else: | |
return self._forward(x, t, mask, rope, context, context_mask, skip) | |
def _forward(self, x, t, mask=None, rope=None, | |
context=None, context_mask=None, skip=None): | |
if self.skip: | |
cat = torch.cat([x, skip], dim=-1) | |
cat = self.skip_norm(cat) | |
x = self.skip_linear(cat) | |
# pre-norm & modulation for attention input | |
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t) | |
# attention | |
attn_output = self.attn(x=norm, mask=mask, rope=rope) | |
# process attention output for input x | |
x = x + gate_msa.unsqueeze(1) * attn_output | |
# process cross attention | |
x = x + self.cross_attn(x=self.cross_norm(x), c=self.context_norm(context), | |
mask=context_mask, rope=None) | |
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm) | |
x = x + gate_mlp.unsqueeze(1) * ff_output | |
return x | |
# time step conditioning embedding | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, dim, freq_embed_dim=256): | |
super().__init__() | |
self.time_embed = SinusPositionEmbedding(freq_embed_dim) | |
self.time_mlp = nn.Sequential( | |
nn.Linear(freq_embed_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim) | |
) | |
def forward(self, timestep: float['b']): | |
time_hidden = self.time_embed(timestep) | |
time = self.time_mlp(time_hidden) # b d | |
return time | |