Spaces:
Paused
Paused
File size: 11,510 Bytes
478a673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import cv2
import numpy as np
from scipy.optimize import linear_sum_assignment
import requests
import json
from fastapi.responses import JSONResponse
from config import API_URL, API_KEY
import logging
logger = logging.getLogger(__name__)
class RepCounter:
def __init__(self, fps, height_cm, mass_kg=0, target_reps=None):
self.count = 0
self.last_state = None
self.cooldown_frames = 15
self.cooldown = 0
self.rep_start_frame = None
self.start_wrist_y = None
self.rep_data = []
self.power_data = []
self.fps = fps
self.cm_per_pixel = None
self.real_distance_cm = height_cm * 0.2735
self.calibration_done = False
self.mass_kg = mass_kg
self.gravity = 9.81
self.target_reps = int(target_reps)
self.target_reached = False
self.final_speed = None
self.final_power = None
self.SKELETON = [
(5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
(9, 10), (11, 12), (5, 11), (6, 12),
(11, 13), (13, 15), (12, 14), (14, 16), (13, 14)
]
def update(self, wrist_y, knee_y, current_frame):
if self.target_reached or self.cooldown > 0:
self.cooldown = max(0, self.cooldown - 1)
return
current_state = 'above' if wrist_y < knee_y else 'below'
if self.last_state != current_state:
if current_state == 'below':
self.rep_start_frame = current_frame
self.start_wrist_y = wrist_y
elif current_state == 'above' and self.last_state == 'below':
if self.rep_start_frame is not None and self.cm_per_pixel is not None:
end_frame = current_frame
duration = (end_frame - self.rep_start_frame) / self.fps
distance_pixels = self.start_wrist_y - wrist_y
distance_cm = distance_pixels * self.cm_per_pixel
if duration > 0:
speed_cmps = abs(distance_cm) / duration
self.rep_data.append(speed_cmps)
if self.mass_kg > 0:
speed_mps = speed_cmps / 100
force = self.mass_kg * self.gravity
power = force * speed_mps
self.power_data.append(power)
self.count += 1
if self.target_reps and self.count >= self.target_reps:
self.count = self.target_reps
self.target_reached = True
self.final_speed = np.mean(self.rep_data) if self.rep_data else 0
self.final_power = np.mean(self.power_data) if self.power_data else 0
self.cooldown = self.cooldown_frames
self.last_state = current_state
# CentroidTracker class
class CentroidTracker:
def __init__(self, max_disappeared=50, max_distance=100):
self.next_id = 0
self.objects = {}
self.max_disappeared = max_disappeared
self.max_distance = max_distance
def _update_missing(self):
to_delete = []
for obj_id in list(self.objects.keys()):
self.objects[obj_id]["missed"] += 1
if self.objects[obj_id]["missed"] > self.max_disappeared:
to_delete.append(obj_id)
for obj_id in to_delete:
del self.objects[obj_id]
def update(self, detections):
if len(detections) == 0:
self._update_missing()
return []
centroids = np.array([[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in detections])
if len(self.objects) == 0:
return self._register_new(centroids)
return self._match_existing(centroids, detections)
def _register_new(self, centroids):
new_ids = []
for centroid in centroids:
self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
new_ids.append(self.next_id)
self.next_id += 1
return new_ids
def _match_existing(self, centroids, detections):
existing_ids = list(self.objects.keys())
existing_centroids = [self.objects[obj_id]["centroid"] for obj_id in existing_ids]
cost = np.linalg.norm(np.array(existing_centroids)[:, np.newaxis] - centroids, axis=2)
row_ind, col_ind = linear_sum_assignment(cost)
used_rows = set()
used_cols = set()
matches = {}
for (row, col) in zip(row_ind, col_ind):
if cost[row, col] <= self.max_distance:
obj_id = existing_ids[row]
matches[obj_id] = centroids[col]
used_rows.add(row)
used_cols.add(col)
for obj_id in existing_ids:
if obj_id not in matches:
self.objects[obj_id]["missed"] += 1
if self.objects[obj_id]["missed"] > self.max_disappeared:
del self.objects[obj_id]
new_ids = []
for col in range(len(centroids)):
if col not in used_cols:
self.objects[self.next_id] = {"centroid": centroids[col], "missed": 0}
new_ids.append(self.next_id)
self.next_id += 1
for obj_id, centroid in matches.items():
self.objects[obj_id]["centroid"] = centroid
self.objects[obj_id]["missed"] = 0
all_ids = []
for detection in detections:
centroid = np.array([(detection[0] + detection[2]) / 2, (detection[1] + detection[3]) / 2])
min_id = None
min_dist = float('inf')
for obj_id, data in self.objects.items():
dist = np.linalg.norm(centroid - data["centroid"])
if dist < min_dist and dist <= self.max_distance:
min_dist = dist
min_id = obj_id
if min_id is not None:
all_ids.append(min_id)
self.objects[min_id]["centroid"] = centroid
else:
all_ids.append(self.next_id)
self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
self.next_id += 1
return all_ids
# Funci贸n de procesamiento optimizada
def process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose):
pose_results = vitpose.pipeline(frame)
keypoints = pose_results.keypoints_xy.float().cpu().numpy()[0]
scores = pose_results.scores.float().cpu().numpy()[0]
valid_points = {}
wrist_midpoint = None
knee_line_y = None
print(keypoints)
print(scores)
# Procesar puntos clave
for i, (kp, conf) in enumerate(zip(keypoints, scores)):
if conf > 0.3 and 5 <= i <= 16:
x, y = map(int, kp[:2])
valid_points[i] = (x, y)
# Calibraci贸n usando keypoints de rodilla (14) y pie (16)
if not rep_counter.calibration_done and 14 in valid_points and 16 in valid_points:
knee = valid_points[14]
ankle = valid_points[16]
pixel_distance = np.sqrt((knee[0] - ankle[0])**2 + (knee[1] - ankle[1])**2)
if pixel_distance > 0:
rep_counter.cm_per_pixel = rep_counter.real_distance_cm / pixel_distance
rep_counter.calibration_done = True
# Calcular puntos de referencia para conteo
if 9 in valid_points and 10 in valid_points:
wrist_midpoint = (
(valid_points[9][0] + valid_points[10][0]) // 2,
(valid_points[9][1] + valid_points[10][1]) // 2
)
if 13 in valid_points and 14 in valid_points:
pt1 = np.array(valid_points[13])
pt2 = np.array(valid_points[14])
direction = pt2 - pt1
extension = 0.2
new_pt1 = pt1 - direction * extension
new_pt2 = pt2 + direction * extension
knee_line_y = (new_pt1[1] + new_pt2[1]) // 2
# Actualizar contador
if wrist_midpoint and knee_line_y:
rep_counter.update(wrist_midpoint[1], knee_line_y, frame_number)
# Funci贸n principal de Gradio
def analyze_dead_lift(input_video, reps, weight, height,vitpose,player_id,exercise_id):
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
rep_counter = RepCounter(fps, int(height), int(weight), int(reps))
tracker = CentroidTracker(max_distance=150)
frame_number = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose)
frame_number += 1
cap.release()
# Preparar payload para webhook
if rep_counter.mass_kg > 0:
power_data = rep_counter.power_data
else:
# Si no hay masa, usar ceros para potencia
power_data = [0] * len(rep_counter.rep_data) if rep_counter.rep_data else []
# Asegurar que tenemos datos para enviar
if rep_counter.rep_data:
payload = {"repetition_data": [
{"repetition": i, "velocidad": round(s,1), "potencia": round(p,1)}
for i, (s, p) in enumerate(zip(rep_counter.rep_data, power_data), start=1)
]}
else:
# En caso de no detectar repeticiones
payload = {"repetition_data": []}
send_results_api(payload, player_id, exercise_id, input_video)
def send_results_api(results_dict: dict,
player_id: str,
exercise_id: str,
video_path: str) -> JSONResponse:
"""
Send video analysis results to the API webhook endpoint.
This function uploads the analyzed video file along with the computed metrics
to the API's webhook endpoint for processing and storage.
Args:
results_dict (dict): Dictionary containing analysis results including:
- video_analysis: Information about the processed video
- repetition_data: List of metrics for each jump repetition
player_id (str): Unique identifier for the player
exercise_id (str): Unique identifier for the exercise
video_path (str): Path to the video file to upload
Returns:
JSONResponse: HTTP response from the API endpoint
Raises:
FileNotFoundError: If the video file doesn't exist
requests.RequestException: If the API request fails
json.JSONEncodeError: If results_dict cannot be serialized to JSON
"""
url = API_URL + "/exercises/webhooks/video-processed-results"
logger.info(f"Sending video results to {url}")
# Open the video file
with open(video_path, 'rb') as video_file:
# Prepare the files dictionary for file upload
files = {
'file': (video_path.split('/')[-1], video_file, 'video/mp4')
}
# Prepare the form data
data = {
'player_id': player_id,
'exercise_id': exercise_id,
'results': json.dumps(results_dict) # Convert dict to JSON string
}
# Send the request with both files and data
response = requests.post(
url,
headers={"token": API_KEY},
files=files,
data=data,
stream=True
)
logger.info(f"Response: {response.status_code}")
logger.info(f"Response: {response.text}")
return response |