File size: 11,510 Bytes
478a673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import cv2
import numpy as np
from scipy.optimize import linear_sum_assignment
import requests
import json
from fastapi.responses import JSONResponse
from config import API_URL, API_KEY
import logging

logger = logging.getLogger(__name__)

class RepCounter:
    def __init__(self, fps, height_cm, mass_kg=0, target_reps=None):
        self.count = 0
        self.last_state = None
        self.cooldown_frames = 15
        self.cooldown = 0
        self.rep_start_frame = None
        self.start_wrist_y = None
        self.rep_data = []
        self.power_data = [] 
        self.fps = fps
        self.cm_per_pixel = None
        self.real_distance_cm = height_cm * 0.2735
        self.calibration_done = False
        self.mass_kg = mass_kg
        self.gravity = 9.81
        self.target_reps = int(target_reps)
        self.target_reached = False
        self.final_speed = None
        self.final_power = None
        self.SKELETON = [
             (5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
            (9, 10), (11, 12), (5, 11), (6, 12),
            (11, 13), (13, 15), (12, 14), (14, 16), (13, 14)
        ]

    def update(self, wrist_y, knee_y, current_frame):
        if self.target_reached or self.cooldown > 0:
            self.cooldown = max(0, self.cooldown - 1)
            return

        current_state = 'above' if wrist_y < knee_y else 'below'

        if self.last_state != current_state:
            if current_state == 'below':
                self.rep_start_frame = current_frame
                self.start_wrist_y = wrist_y
            elif current_state == 'above' and self.last_state == 'below':
                if self.rep_start_frame is not None and self.cm_per_pixel is not None:
                    end_frame = current_frame
                    duration = (end_frame - self.rep_start_frame) / self.fps
                    distance_pixels = self.start_wrist_y - wrist_y
                    distance_cm = distance_pixels * self.cm_per_pixel

                    if duration > 0:
                        speed_cmps = abs(distance_cm) / duration
                        self.rep_data.append(speed_cmps)

                        if self.mass_kg > 0:
                            speed_mps = speed_cmps / 100
                            force = self.mass_kg * self.gravity
                            power = force * speed_mps
                            self.power_data.append(power)

                        self.count += 1
                        if self.target_reps and self.count >= self.target_reps:
                            self.count = self.target_reps
                            self.target_reached = True
                            self.final_speed = np.mean(self.rep_data) if self.rep_data else 0
                            self.final_power = np.mean(self.power_data) if self.power_data else 0

                        self.cooldown = self.cooldown_frames

        self.last_state = current_state

# CentroidTracker class
class CentroidTracker:
    def __init__(self, max_disappeared=50, max_distance=100):
        self.next_id = 0
        self.objects = {}
        self.max_disappeared = max_disappeared
        self.max_distance = max_distance

    def _update_missing(self):
        to_delete = []
        for obj_id in list(self.objects.keys()):
            self.objects[obj_id]["missed"] += 1
            if self.objects[obj_id]["missed"] > self.max_disappeared:
                to_delete.append(obj_id)
        for obj_id in to_delete:
            del self.objects[obj_id]

    def update(self, detections):
        if len(detections) == 0:
            self._update_missing()
            return []

        centroids = np.array([[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in detections])

        if len(self.objects) == 0:
            return self._register_new(centroids)

        return self._match_existing(centroids, detections)

    def _register_new(self, centroids):
        new_ids = []
        for centroid in centroids:
            self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
            new_ids.append(self.next_id)
            self.next_id += 1
        return new_ids

    def _match_existing(self, centroids, detections):
        existing_ids = list(self.objects.keys())
        existing_centroids = [self.objects[obj_id]["centroid"] for obj_id in existing_ids]

        cost = np.linalg.norm(np.array(existing_centroids)[:, np.newaxis] - centroids, axis=2)
        row_ind, col_ind = linear_sum_assignment(cost)

        used_rows = set()
        used_cols = set()
        matches = {}

        for (row, col) in zip(row_ind, col_ind):
            if cost[row, col] <= self.max_distance:
                obj_id = existing_ids[row]
                matches[obj_id] = centroids[col]
                used_rows.add(row)
                used_cols.add(col)

        for obj_id in existing_ids:
            if obj_id not in matches:
                self.objects[obj_id]["missed"] += 1
                if self.objects[obj_id]["missed"] > self.max_disappeared:
                    del self.objects[obj_id]

        new_ids = []
        for col in range(len(centroids)):
            if col not in used_cols:
                self.objects[self.next_id] = {"centroid": centroids[col], "missed": 0}
                new_ids.append(self.next_id)
                self.next_id += 1

        for obj_id, centroid in matches.items():
            self.objects[obj_id]["centroid"] = centroid
            self.objects[obj_id]["missed"] = 0

        all_ids = []
        for detection in detections:
            centroid = np.array([(detection[0] + detection[2]) / 2, (detection[1] + detection[3]) / 2])
            min_id = None
            min_dist = float('inf')
            for obj_id, data in self.objects.items():
                dist = np.linalg.norm(centroid - data["centroid"])
                if dist < min_dist and dist <= self.max_distance:
                    min_dist = dist
                    min_id = obj_id
            if min_id is not None:
                all_ids.append(min_id)
                self.objects[min_id]["centroid"] = centroid
            else:
                all_ids.append(self.next_id)
                self.objects[self.next_id] = {"centroid": centroid, "missed": 0}
                self.next_id += 1

        return all_ids

# Funci贸n de procesamiento optimizada
def process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose):

    pose_results = vitpose.pipeline(frame)


    keypoints = pose_results.keypoints_xy.float().cpu().numpy()[0]
    scores = pose_results.scores.float().cpu().numpy()[0]
    valid_points = {}
    wrist_midpoint = None
    knee_line_y = None
    
    
    print(keypoints)
    print(scores)

    # Procesar puntos clave
    for i, (kp, conf) in enumerate(zip(keypoints, scores)):
        if conf > 0.3 and 5 <= i <= 16:
            x, y = map(int, kp[:2])
            valid_points[i] = (x, y)

    # Calibraci贸n usando keypoints de rodilla (14) y pie (16)
    if not rep_counter.calibration_done and 14 in valid_points and 16 in valid_points:
        knee = valid_points[14]
        ankle = valid_points[16]
        pixel_distance = np.sqrt((knee[0] - ankle[0])**2 + (knee[1] - ankle[1])**2)
        if pixel_distance > 0:
            rep_counter.cm_per_pixel = rep_counter.real_distance_cm / pixel_distance
            rep_counter.calibration_done = True

    # Calcular puntos de referencia para conteo
    if 9 in valid_points and 10 in valid_points:
        wrist_midpoint = (
            (valid_points[9][0] + valid_points[10][0]) // 2,
            (valid_points[9][1] + valid_points[10][1]) // 2
        )
    if 13 in valid_points and 14 in valid_points:
        pt1 = np.array(valid_points[13])
        pt2 = np.array(valid_points[14])
        direction = pt2 - pt1
        extension = 0.2
        new_pt1 = pt1 - direction * extension
        new_pt2 = pt2 + direction * extension
        knee_line_y = (new_pt1[1] + new_pt2[1]) // 2

    # Actualizar contador
    if wrist_midpoint and knee_line_y:
        rep_counter.update(wrist_midpoint[1], knee_line_y, frame_number)
            
            
            
# Funci贸n principal de Gradio
def analyze_dead_lift(input_video, reps, weight, height,vitpose,player_id,exercise_id):
    cap = cv2.VideoCapture(input_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    
    
    rep_counter = RepCounter(fps, int(height), int(weight), int(reps))
    tracker = CentroidTracker(max_distance=150)

    frame_number = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        process_frame_for_counting(frame, tracker, rep_counter, frame_number,vitpose)
        frame_number += 1

    cap.release()

    # Preparar payload para webhook
    if rep_counter.mass_kg > 0:
        power_data = rep_counter.power_data
    else:
        # Si no hay masa, usar ceros para potencia
        power_data = [0] * len(rep_counter.rep_data) if rep_counter.rep_data else []

    # Asegurar que tenemos datos para enviar
    if rep_counter.rep_data:
        payload = {"repetition_data": [
            {"repetition": i, "velocidad": round(s,1), "potencia": round(p,1)}
            for i, (s, p) in enumerate(zip(rep_counter.rep_data, power_data), start=1)
        ]}
    else:
        # En caso de no detectar repeticiones
        payload = {"repetition_data": []}
    
    
    send_results_api(payload, player_id, exercise_id, input_video)


def send_results_api(results_dict: dict,
                     player_id: str,
                     exercise_id: str,
                     video_path: str) -> JSONResponse:
    """
    Send video analysis results to the API webhook endpoint.
    
    This function uploads the analyzed video file along with the computed metrics
    to the API's webhook endpoint for processing and storage.
    
    Args:
        results_dict (dict): Dictionary containing analysis results including:
            - video_analysis: Information about the processed video
            - repetition_data: List of metrics for each jump repetition
        player_id (str): Unique identifier for the player
        exercise_id (str): Unique identifier for the exercise
        video_path (str): Path to the video file to upload
        
    Returns:
        JSONResponse: HTTP response from the API endpoint
        
    Raises:
        FileNotFoundError: If the video file doesn't exist
        requests.RequestException: If the API request fails
        json.JSONEncodeError: If results_dict cannot be serialized to JSON
    """
    url = API_URL + "/exercises/webhooks/video-processed-results"
    logger.info(f"Sending video results to {url}")
    
    # Open the video file
    with open(video_path, 'rb') as video_file:
        # Prepare the files dictionary for file upload
        files = {
            'file': (video_path.split('/')[-1], video_file, 'video/mp4')
        }
        
        # Prepare the form data
        data = {
            'player_id': player_id,
            'exercise_id': exercise_id,
            'results': json.dumps(results_dict)  # Convert dict to JSON string
        }
        
        # Send the request with both files and data
        response = requests.post(
            url, 
            headers={"token": API_KEY},
            files=files,
            data=data,
            stream=True
        )
    
    logger.info(f"Response: {response.status_code}")
    logger.info(f"Response: {response.text}")
    return response