Spaces:
Paused
Paused
Commit
·
d1dd306
1
Parent(s):
fccef52
refactor
Browse files
CLAUDE.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CLAUDE.md
|
2 |
+
|
3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
4 |
+
|
5 |
+
## Development Commands
|
6 |
+
|
7 |
+
### Running the Application
|
8 |
+
```bash
|
9 |
+
# Install dependencies
|
10 |
+
pip install -r requirements.txt
|
11 |
+
|
12 |
+
# Start the FastAPI server
|
13 |
+
uvicorn app:app --host 0.0.0.0 --port 7860
|
14 |
+
|
15 |
+
# Alternative development server with reload
|
16 |
+
uvicorn app:app --reload
|
17 |
+
```
|
18 |
+
|
19 |
+
### Docker Deployment
|
20 |
+
```bash
|
21 |
+
# Build the Docker image
|
22 |
+
docker build -t sportsai .
|
23 |
+
|
24 |
+
# Run the container
|
25 |
+
docker run -p 7860:7860 sportsai
|
26 |
+
```
|
27 |
+
|
28 |
+
### Environment Setup
|
29 |
+
- Create `.env` file with required environment variables:
|
30 |
+
- `API_URL`: External API endpoint URL
|
31 |
+
- `API_KEY`: Authentication key for external API
|
32 |
+
- `AI_API_TOKEN`: Token for authenticating incoming requests
|
33 |
+
|
34 |
+
## Architecture Overview
|
35 |
+
|
36 |
+
### Core Components
|
37 |
+
|
38 |
+
**FastAPI Application (`app.py`)**
|
39 |
+
- Main web server with two primary endpoints:
|
40 |
+
- `/upload`: General video processing with pose estimation
|
41 |
+
- `/exercise/salto_alto`: Specialized high jump exercise analysis
|
42 |
+
- Uses background tasks for asynchronous video processing
|
43 |
+
- Handles file uploads and API authentication
|
44 |
+
|
45 |
+
**Pose Estimation (`vitpose.py`)**
|
46 |
+
- Wraps the `rt-pose` library with VitPose model
|
47 |
+
- Provides pose estimation pipeline with CUDA/CPU support
|
48 |
+
- Handles video-to-frames conversion and frame annotation
|
49 |
+
- Automatically rotates landscape videos to portrait orientation
|
50 |
+
|
51 |
+
**Video Analysis (`tasks.py`)**
|
52 |
+
- Contains `process_salto_alto()` function for high jump analysis
|
53 |
+
- Implements comprehensive jump metrics calculation:
|
54 |
+
- Jump height detection using pose keypoints
|
55 |
+
- Sayer power estimation
|
56 |
+
- Repetition counting
|
57 |
+
- Metrics visualization overlay
|
58 |
+
- Sends results to external API endpoints via webhooks
|
59 |
+
|
60 |
+
**Configuration (`config.py`)**
|
61 |
+
- Manages environment variables and API credentials
|
62 |
+
- Uses python-dotenv for environment file loading
|
63 |
+
|
64 |
+
### Key Features
|
65 |
+
|
66 |
+
**High Jump Analysis Pipeline:**
|
67 |
+
1. Video upload and pose estimation using VitPose
|
68 |
+
2. Calibration using person height in first frame
|
69 |
+
3. Jump detection based on ankle movement thresholds
|
70 |
+
4. Real-time metrics calculation and overlay visualization
|
71 |
+
5. Results packaging and webhook delivery
|
72 |
+
|
73 |
+
**Pose Estimation:**
|
74 |
+
- Uses PekingU/rtdetr object detection + usyd-community/vitpose-plus-small
|
75 |
+
- Supports both CUDA and CPU inference
|
76 |
+
- Model compilation enabled for performance optimization
|
77 |
+
|
78 |
+
**Video Processing:**
|
79 |
+
- Automatic landscape-to-portrait rotation
|
80 |
+
- Skeleton visualization with keypoint connections
|
81 |
+
- Metrics overlay with rounded rectangles and real-time updates
|
82 |
+
|
83 |
+
### Dependencies
|
84 |
+
- **FastAPI**: Web framework for API endpoints
|
85 |
+
- **rt-pose**: Pose estimation pipeline
|
86 |
+
- **OpenCV**: Video processing and computer vision
|
87 |
+
- **Supervision**: Keypoint visualization utilities
|
88 |
+
- **PyTorch**: Deep learning framework for pose models
|
89 |
+
|
90 |
+
### File Structure
|
91 |
+
- `app.py`: Main FastAPI application
|
92 |
+
- `vitpose.py`: VitPose wrapper class
|
93 |
+
- `tasks.py`: Video processing and analysis functions
|
94 |
+
- `config.py`: Environment configuration
|
95 |
+
- `requirements.txt`: Python dependencies
|
96 |
+
- `Dockerfile`: Container deployment configuration
|
97 |
+
- `static/`: Directory for processed video outputs (git-ignored)
|
98 |
+
|
99 |
+
### API Authentication
|
100 |
+
All endpoints require token-based authentication via header or body parameters. Unauthorized requests return 401 status codes.
|
app.py
CHANGED
@@ -13,7 +13,7 @@ from tasks import process_video,process_salto_alto
|
|
13 |
from fastapi.responses import JSONResponse
|
14 |
from config import AI_API_TOKEN
|
15 |
import logging
|
16 |
-
|
17 |
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
@@ -76,7 +76,7 @@ async def upload(background_tasks: BackgroundTasks,
|
|
76 |
exercise_id: str = Body(...)
|
77 |
):
|
78 |
|
79 |
-
|
80 |
player_data = json.loads(player_data)
|
81 |
|
82 |
if token != AI_API_TOKEN:
|
@@ -105,3 +105,4 @@ async def upload(background_tasks: BackgroundTasks,
|
|
105 |
print(f"returning response")
|
106 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
107 |
"status": 200})
|
|
|
|
13 |
from fastapi.responses import JSONResponse
|
14 |
from config import AI_API_TOKEN
|
15 |
import logging
|
16 |
+
import json
|
17 |
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
|
|
76 |
exercise_id: str = Body(...)
|
77 |
):
|
78 |
|
79 |
+
|
80 |
player_data = json.loads(player_data)
|
81 |
|
82 |
if token != AI_API_TOKEN:
|
|
|
105 |
print(f"returning response")
|
106 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
107 |
"status": 200})
|
108 |
+
|
tasks.py
CHANGED
@@ -6,6 +6,8 @@ from fastapi import UploadFile
|
|
6 |
import logging
|
7 |
import cv2
|
8 |
import numpy as np
|
|
|
|
|
9 |
|
10 |
import time
|
11 |
import json
|
@@ -13,8 +15,108 @@ from fastapi.responses import JSONResponse
|
|
13 |
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
video_path = file_name
|
19 |
|
20 |
contents = open(video_path, "rb").read()
|
@@ -59,14 +161,27 @@ def process_salto_alto(file_name: str,
|
|
59 |
exercise_id: str,
|
60 |
repetitions) -> dict:
|
61 |
"""
|
62 |
-
Process a high jump exercise video using VitPose for pose estimation.
|
|
|
|
|
|
|
63 |
|
64 |
Args:
|
65 |
-
file_name: Path to the input video
|
66 |
-
vitpose: VitPose instance for pose estimation
|
67 |
-
player_data: Dictionary containing player information
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
"""
|
71 |
# Use the provided VitPose instance
|
72 |
|
@@ -109,7 +224,26 @@ def send_results_api(results_dict: dict,
|
|
109 |
exercise_id: str,
|
110 |
video_path: str) -> JSONResponse:
|
111 |
"""
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
"""
|
114 |
url = API_URL + "/excercises/webhooks/video-processed-results"
|
115 |
logger.info(f"Sending video results to {url}")
|
@@ -142,73 +276,68 @@ def send_results_api(results_dict: dict,
|
|
142 |
return response
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
def analyze_jump_video(model: VitPose,
|
150 |
-
input_video: str,
|
151 |
-
output_video: str,
|
152 |
-
player_height: float,
|
153 |
-
body_mass_kg: float,
|
154 |
-
repetitions: int) -> dict | None:
|
155 |
"""
|
156 |
-
|
|
|
|
|
|
|
157 |
|
158 |
Args:
|
159 |
-
|
160 |
-
|
161 |
-
output_video: Path to output video
|
162 |
-
reference_height: Height of the person in meters
|
163 |
-
body_mass_kg: Weight of the person in kg
|
164 |
|
165 |
Returns:
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"""
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
SMOOTHING_WINDOW = 5 # Ventana para suavizar la altura de los tobillos
|
177 |
-
HORIZONTAL_OFFSET_FACTOR = 0.75 # Factor para ubicar el cuadro entre el hombro y el borde
|
178 |
-
VELOCITY_WINDOW = 3 # Número de frames para calcular la velocidad
|
179 |
-
METRICS_BELOW_FEET_OFFSET = 20 # Offset en píxeles para colocar los cuadros debajo de los pies
|
180 |
-
|
181 |
-
# Color palette
|
182 |
-
BLUE = (255, 0, 0)
|
183 |
-
GREEN = (0, 255, 0)
|
184 |
-
YELLOW = (0, 255, 255)
|
185 |
-
WHITE = (255, 255, 255)
|
186 |
-
BLACK = (0, 0, 0)
|
187 |
-
GRAY = (128, 128, 128)
|
188 |
-
LIGHT_GRAY = (200, 200, 200)
|
189 |
-
|
190 |
-
repetition_data = []
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
print("Error al abrir el video")
|
196 |
-
return {}
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
ret, frame = cap.read()
|
200 |
if not ret:
|
201 |
-
|
202 |
-
return {}
|
203 |
|
204 |
-
|
205 |
-
PX_PER_METER = None
|
206 |
-
initial_person_height_px = None
|
207 |
-
initial_left_shoulder_x = None
|
208 |
-
initial_right_shoulder_x = None
|
209 |
-
|
210 |
-
# Process first frame to calibrate
|
211 |
-
output = model(frame) # Detect pose in first frame
|
212 |
keypoints = output.keypoints_xy.float().cpu().numpy()
|
213 |
labels = model.pose_estimator_config.label2id
|
214 |
|
@@ -218,276 +347,413 @@ def analyze_jump_video(model: VitPose,
|
|
218 |
L_shoulder_keypoint = labels["L_Shoulder"]
|
219 |
R_shoulder_keypoint = labels["R_Shoulder"]
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
kpts_first = keypoints[0]
|
227 |
-
if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0:
|
228 |
initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
|
229 |
PX_PER_METER = initial_person_height_px / player_height
|
230 |
-
if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0:
|
231 |
initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
|
232 |
initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
|
233 |
-
|
234 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
235 |
-
|
236 |
-
cap.release()
|
237 |
-
return None
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
# Add try-except block around the model inference to catch any model errors
|
274 |
-
try:
|
275 |
-
output = model(annotated_frame)
|
276 |
-
keypoints = output.keypoints_xy.float().cpu().numpy()
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
len(
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
left_shoulder = kpts[L_shoulder_keypoint]
|
293 |
-
right_shoulder = kpts[R_shoulder_keypoint]
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
else:
|
377 |
-
# Skip processing for this frame - no valid keypoints detected
|
378 |
-
print("Skipping frame - no valid keypoints detected")
|
379 |
-
print(f"keypoints {keypoints}")
|
380 |
last_detected_ankles_y = None
|
381 |
-
velocity_vertical = 0.0
|
382 |
-
|
383 |
-
#
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
"
|
411 |
-
"black": BLACK,
|
412 |
-
"gray": GRAY,
|
413 |
-
"light_gray": LIGHT_GRAY
|
414 |
},
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
'R_Shoulder': 6, 'R_Wrist': 10
|
428 |
-
}
|
429 |
-
|
430 |
-
# Define skeleton connections (pairs of keypoints that should be connected)
|
431 |
-
skeleton_connections = [
|
432 |
-
(keypoint_indices["Nose"], keypoint_indices["L_Eye"]),
|
433 |
-
(keypoint_indices["Nose"], keypoint_indices["R_Eye"]),
|
434 |
-
(keypoint_indices["L_Eye"], keypoint_indices["L_Ear"]),
|
435 |
-
(keypoint_indices["R_Eye"], keypoint_indices["R_Ear"]),
|
436 |
-
(keypoint_indices["Nose"], keypoint_indices["L_Shoulder"]),
|
437 |
-
(keypoint_indices["Nose"], keypoint_indices["R_Shoulder"]),
|
438 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["R_Shoulder"]),
|
439 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["L_Elbow"]),
|
440 |
-
(keypoint_indices["R_Shoulder"], keypoint_indices["R_Elbow"]),
|
441 |
-
(keypoint_indices["L_Elbow"], keypoint_indices["L_Wrist"]),
|
442 |
-
(keypoint_indices["R_Elbow"], keypoint_indices["R_Wrist"]),
|
443 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["L_Hip"]),
|
444 |
-
(keypoint_indices["R_Shoulder"], keypoint_indices["R_Hip"]),
|
445 |
-
(keypoint_indices["L_Hip"], keypoint_indices["R_Hip"]),
|
446 |
-
(keypoint_indices["L_Hip"], keypoint_indices["L_Knee"]),
|
447 |
-
(keypoint_indices["R_Hip"], keypoint_indices["R_Knee"]),
|
448 |
-
(keypoint_indices["L_Knee"], keypoint_indices["L_Ankle"]),
|
449 |
-
(keypoint_indices["R_Knee"], keypoint_indices["R_Ankle"])
|
450 |
-
]
|
451 |
-
|
452 |
-
kpts = keypoints[0]
|
453 |
-
# Draw points
|
454 |
-
for i, point in enumerate(kpts):
|
455 |
-
if point[0] > 0 and point[1] > 0: # Only draw if keypoint is valid
|
456 |
-
cv2.circle(annotated_frame, (int(point[0]), int(point[1])), 5, GREEN, -1)
|
457 |
-
|
458 |
-
# Draw connections
|
459 |
-
for connection in skeleton_connections:
|
460 |
-
start_idx, end_idx = connection
|
461 |
-
if (start_idx < len(kpts) and end_idx < len(kpts) and
|
462 |
-
kpts[start_idx][0] > 0 and kpts[start_idx][1] > 0 and
|
463 |
-
kpts[end_idx][0] > 0 and kpts[end_idx][1] > 0):
|
464 |
-
start_point = (int(kpts[start_idx][0]), int(kpts[start_idx][1]))
|
465 |
-
end_point = (int(kpts[end_idx][0]), int(kpts[end_idx][1]))
|
466 |
-
cv2.line(annotated_frame, start_point, end_point, YELLOW, 2)
|
467 |
-
except Exception as e:
|
468 |
-
print(f"Error drawing skeleton: {e}")
|
469 |
-
|
470 |
-
out.write(annotated_frame)
|
471 |
-
|
472 |
-
# Prepare results dictionary
|
473 |
-
results_dict = {
|
474 |
-
"video_analysis": {
|
475 |
-
"output_video": str(output_video),
|
476 |
-
},
|
477 |
-
"repetition_data": [
|
478 |
-
{
|
479 |
-
"repetition": int(rep["repetition"]),
|
480 |
-
"distancia_elevada": float(rep["distancia_elevada"]),
|
481 |
-
"salto_alto": float(rep["salto_alto"]),
|
482 |
-
"potencia_sayer": float(rep["potencia_sayer"])
|
483 |
-
} for rep in repetition_data
|
484 |
-
]
|
485 |
-
}
|
486 |
-
|
487 |
-
cap.release()
|
488 |
-
out.release()
|
489 |
-
|
490 |
-
return results_dict
|
491 |
|
492 |
|
493 |
def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
|
@@ -520,6 +786,234 @@ def calculate_high_jump(player_height:float, max_jump_height:float) -> float:
|
|
520 |
return player_height + max_jump_height
|
521 |
|
522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,
|
524 |
repetition_count, last_detected_ankles_y, initial_left_shoulder_x,
|
525 |
initial_right_shoulder_x, width, height, colors, metrics_below_feet_offset=20,
|
@@ -546,165 +1040,52 @@ def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical,
|
|
546 |
Returns:
|
547 |
Frame with metrics overlay
|
548 |
"""
|
|
|
|
|
549 |
|
550 |
-
|
551 |
-
|
552 |
|
|
|
|
|
|
|
|
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
font_thickness_metric = 1
|
561 |
-
font_thickness_title_main = 1 # Thickness for main title
|
562 |
-
line_height_title_metric = int(20 * 1.2)
|
563 |
-
line_height_value = int(25 * 1.2)
|
564 |
-
padding_vertical = int(15 * 1.2)
|
565 |
-
padding_horizontal = int(15 * 1.2)
|
566 |
-
text_color_title = colors["light_gray"]
|
567 |
-
text_color_value = colors["white"]
|
568 |
-
text_color_title_main = colors["white"]
|
569 |
-
bg_color = colors["gray"]
|
570 |
-
border_color = colors["white"]
|
571 |
-
border_thickness = 1
|
572 |
-
corner_radius = 10
|
573 |
-
spacing_horizontal = 30
|
574 |
-
title_y_offset = 50 # Lower vertical position of title
|
575 |
-
metrics_y_offset_alto = 80 # Adjust Salto Alto position to leave space below
|
576 |
-
metrics_y_offset_relativo = None # Will be calculated dynamically
|
577 |
-
metrics_y_offset_velocidad = None # Will be calculated dynamically
|
578 |
-
metrics_y_offset_potencia = None # Will be calculated dynamically
|
579 |
-
|
580 |
-
# Helper function to draw rounded rectangles
|
581 |
-
def draw_rounded_rect(img, pt1, pt2, color, thickness=-1, lineType=cv2.LINE_AA, radius=10):
|
582 |
-
x1, y1 = pt1
|
583 |
-
x2, y2 = pt2
|
584 |
-
w = x2 - x1
|
585 |
-
h = y2 - y1
|
586 |
-
if radius > 0:
|
587 |
-
img = cv2.ellipse(img, (x1 + radius, y1 + radius), (radius, radius), 0, 0, 90, color, thickness, lineType)
|
588 |
-
img = cv2.ellipse(img, (x2 - radius, y1 + radius), (radius, radius), 0, 90, 180, color, thickness, lineType)
|
589 |
-
img = cv2.ellipse(img, (x2 - radius, y2 - radius), (radius, radius), 0, 180, 270, color, thickness, lineType)
|
590 |
-
img = cv2.ellipse(img, (x1 + radius, y2 - radius), (radius, radius), 0, 270, 360, color, thickness, lineType)
|
591 |
-
|
592 |
-
img = cv2.rectangle(img, (x1, y1 + radius), (x2, y2 - radius), color, thickness, lineType)
|
593 |
-
img = cv2.rectangle(img, (x1 + radius, y1), (x2 - radius, y2), color, thickness, lineType)
|
594 |
-
else:
|
595 |
-
img = cv2.rectangle(img, pt1, pt2, color, thickness, lineType)
|
596 |
-
return img
|
597 |
|
598 |
-
#
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
# --- Relative Jump Box (dynamically positioned) ---
|
606 |
-
relativo_text = "SALTO RELATIVO"
|
607 |
-
relativo_value = f"{max(0, max_jump_height):.2f} m"
|
608 |
-
relativo_text_size = cv2.getTextSize(relativo_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
609 |
-
relativo_value_size = cv2.getTextSize(relativo_value, font, font_scale_value, font_thickness_metric)[0]
|
610 |
-
bg_width_relativo = max(relativo_text_size[0], relativo_value_size[0]) + 2 * padding_horizontal
|
611 |
-
bg_height_relativo = line_height_title_metric + line_height_value + 2 * padding_vertical
|
612 |
-
x_relativo = 20
|
613 |
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
metrics_y_offset_relativo = height - 150 # Default position if ankles not detected
|
621 |
-
|
622 |
-
if metrics_y_offset_relativo is not None:
|
623 |
-
y_relativo = metrics_y_offset_relativo
|
624 |
-
pt1_relativo = (x_relativo, y_relativo)
|
625 |
-
pt2_relativo = (x_relativo + bg_width_relativo, y_relativo + bg_height_relativo)
|
626 |
-
overlay = draw_rounded_rect(overlay, pt1_relativo, pt2_relativo, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
627 |
-
cv2.rectangle(overlay, pt1_relativo, pt2_relativo, border_color, border_thickness, cv2.LINE_AA)
|
628 |
-
cv2.putText(overlay, relativo_text, (x_relativo + (bg_width_relativo - relativo_text_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
629 |
-
cv2.putText(overlay, relativo_value, (x_relativo + (bg_width_relativo - relativo_value_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
630 |
-
|
631 |
-
# --- High Jump Box (stays in top right) ---
|
632 |
-
alto_text = "SALTO ALTO"
|
633 |
-
alto_value = f"{max(0, salto_alto):.2f} m"
|
634 |
-
alto_text_size = cv2.getTextSize(alto_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
635 |
-
alto_value_size = cv2.getTextSize(alto_value, font, font_scale_value, font_thickness_metric)[0]
|
636 |
-
bg_width_alto = max(alto_text_size[0], alto_value_size[0]) + 2 * padding_horizontal
|
637 |
-
bg_height_alto = line_height_title_metric + line_height_value + 2 * padding_vertical
|
638 |
-
x_alto = width - bg_width_alto - 20 # Default position near right edge
|
639 |
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
overlay = draw_rounded_rect(overlay, pt1_alto, pt2_alto, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
650 |
-
cv2.rectangle(overlay, pt1_alto, pt2_alto, border_color, border_thickness, cv2.LINE_AA)
|
651 |
-
cv2.putText(overlay, alto_text, (x_alto + (bg_width_alto - alto_text_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
652 |
-
cv2.putText(overlay, alto_value, (x_alto + (bg_width_alto - alto_value_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
653 |
-
|
654 |
-
# --- Repetitions Box ---
|
655 |
-
reps_text = "REPETICIONES"
|
656 |
-
reps_value = f"{repetition_count}"
|
657 |
-
reps_text_size = cv2.getTextSize(reps_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
658 |
-
reps_value_size = cv2.getTextSize(reps_value, font, font_scale_value, font_thickness_metric)[0]
|
659 |
-
bg_width_reps = max(reps_text_size[0], reps_value_size[0]) + 2 * padding_horizontal
|
660 |
-
bg_height_reps = line_height_title_metric + line_height_value + 2 * padding_vertical
|
661 |
-
x_reps = x_relativo
|
662 |
-
y_reps = y_relativo + bg_height_relativo + 10
|
663 |
-
|
664 |
-
pt1_reps = (x_reps, y_reps)
|
665 |
-
pt2_reps = (x_reps + bg_width_reps, y_reps + bg_height_reps)
|
666 |
-
overlay = draw_rounded_rect(overlay, pt1_reps, pt2_reps, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
667 |
-
cv2.rectangle(overlay, pt1_reps, pt2_reps, border_color, border_thickness, cv2.LINE_AA)
|
668 |
-
cv2.putText(overlay, reps_text, (x_reps + (bg_width_reps - reps_text_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
669 |
-
cv2.putText(overlay, reps_value, (x_reps + (bg_width_reps - reps_value_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
670 |
-
|
671 |
-
# --- Vertical Velocity Box (below feet) ---
|
672 |
-
if last_detected_ankles_y is not None:
|
673 |
-
velocidad_text = "VELOCIDAD VERTICAL"
|
674 |
-
velocidad_value = f"{abs(velocity_vertical):.2f} m/s" # Show absolute value
|
675 |
-
velocidad_text_size = cv2.getTextSize(velocidad_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
676 |
-
velocidad_value_size = cv2.getTextSize(velocidad_value, font, font_scale_value, font_thickness_metric)[0]
|
677 |
-
bg_width_velocidad = max(velocidad_text_size[0], velocidad_value_size[0]) + 2 * padding_horizontal
|
678 |
-
bg_height_velocidad = line_height_title_metric + line_height_value + 2 * padding_vertical
|
679 |
-
|
680 |
-
x_velocidad = int(width / 2 - bg_width_velocidad / 2) # Horizontally centered
|
681 |
-
y_velocidad = int(last_detected_ankles_y + metrics_below_feet_offset + bg_height_velocidad)
|
682 |
-
|
683 |
-
pt1_velocidad = (int(x_velocidad), int(y_velocidad - bg_height_velocidad))
|
684 |
-
pt2_velocidad = (int(x_velocidad + bg_width_velocidad), int(y_velocidad))
|
685 |
-
overlay = draw_rounded_rect(overlay, pt1_velocidad, pt2_velocidad, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
686 |
-
cv2.rectangle(overlay, pt1_velocidad, pt2_velocidad, border_color, border_thickness, cv2.LINE_AA)
|
687 |
-
cv2.putText(overlay, velocidad_text, (int(x_velocidad + (bg_width_velocidad - velocidad_text_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
688 |
-
cv2.putText(overlay, velocidad_value, (int(x_velocidad + (bg_width_velocidad - velocidad_value_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
689 |
-
|
690 |
-
# --- Sayer Power Box (below velocity box) ---
|
691 |
-
potencia_text = "POTENCIA SAYER"
|
692 |
potencia_value = f"{peak_power_sayer:.2f} W"
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
bg_height_potencia = line_height_title_metric + line_height_value + 2 * padding_vertical
|
697 |
-
|
698 |
-
x_potencia = x_velocidad # Same horizontal position as velocity
|
699 |
-
y_potencia = y_velocidad + 5 # Below velocity box
|
700 |
-
|
701 |
-
pt1_potencia = (int(x_potencia), int(y_potencia))
|
702 |
-
pt2_potencia = (int(x_potencia + bg_width_potencia), int(y_potencia + bg_height_potencia))
|
703 |
-
overlay = draw_rounded_rect(overlay, pt1_potencia, pt2_potencia, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
704 |
-
cv2.rectangle(overlay, pt1_potencia, pt2_potencia, border_color, border_thickness, cv2.LINE_AA)
|
705 |
-
cv2.putText(overlay, potencia_text, (int(x_potencia + (bg_width_potencia - potencia_text_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
706 |
-
cv2.putText(overlay, potencia_value, (int(x_potencia + (bg_width_potencia - potencia_value_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
707 |
|
708 |
# Blend overlay with original frame
|
709 |
-
result = cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
|
710 |
return result
|
|
|
6 |
import logging
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Optional, Tuple, Dict, List
|
11 |
|
12 |
import time
|
13 |
import json
|
|
|
15 |
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Jump Analysis Constants
|
20 |
+
JUMP_THRESHOLD_PERCENT = 0.05
|
21 |
+
SMOOTHING_WINDOW = 5
|
22 |
+
HORIZONTAL_OFFSET_FACTOR = 0.75
|
23 |
+
VELOCITY_WINDOW = 3
|
24 |
+
METRICS_BELOW_FEET_OFFSET = 20
|
25 |
+
|
26 |
+
# Color Constants
|
27 |
+
BLUE = (255, 0, 0)
|
28 |
+
GREEN = (0, 255, 0)
|
29 |
+
YELLOW = (0, 255, 255)
|
30 |
+
WHITE = (255, 255, 255)
|
31 |
+
BLACK = (0, 0, 0)
|
32 |
+
GRAY = (128, 128, 128)
|
33 |
+
LIGHT_GRAY = (200, 200, 200)
|
34 |
+
|
35 |
+
COLORS = {
|
36 |
+
"blue": BLUE,
|
37 |
+
"green": GREEN,
|
38 |
+
"yellow": YELLOW,
|
39 |
+
"white": WHITE,
|
40 |
+
"black": BLACK,
|
41 |
+
"gray": GRAY,
|
42 |
+
"light_gray": LIGHT_GRAY
|
43 |
+
}
|
44 |
+
|
45 |
+
# Keypoint indices
|
46 |
+
KEYPOINT_INDICES = {
|
47 |
+
'L_Ankle': 15, 'L_Ear': 3, 'L_Elbow': 7, 'L_Eye': 1, 'L_Hip': 11,
|
48 |
+
'L_Knee': 13, 'L_Shoulder': 5, 'L_Wrist': 9, 'Nose': 0, 'R_Ankle': 16,
|
49 |
+
'R_Ear': 4, 'R_Elbow': 8, 'R_Eye': 2, 'R_Hip': 12, 'R_Knee': 14,
|
50 |
+
'R_Shoulder': 6, 'R_Wrist': 10
|
51 |
+
}
|
52 |
+
|
53 |
+
# Skeleton connections
|
54 |
+
SKELETON_CONNECTIONS = [
|
55 |
+
("Nose", "L_Eye"), ("Nose", "R_Eye"), ("L_Eye", "L_Ear"), ("R_Eye", "R_Ear"),
|
56 |
+
("Nose", "L_Shoulder"), ("Nose", "R_Shoulder"), ("L_Shoulder", "R_Shoulder"),
|
57 |
+
("L_Shoulder", "L_Elbow"), ("R_Shoulder", "R_Elbow"), ("L_Elbow", "L_Wrist"),
|
58 |
+
("R_Elbow", "R_Wrist"), ("L_Shoulder", "L_Hip"), ("R_Shoulder", "R_Hip"),
|
59 |
+
("L_Hip", "R_Hip"), ("L_Hip", "L_Knee"), ("R_Hip", "R_Knee"),
|
60 |
+
("L_Knee", "L_Ankle"), ("R_Knee", "R_Ankle")
|
61 |
+
]
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class JumpMetrics:
|
65 |
+
max_jump_height: float = 0.0
|
66 |
+
velocity_vertical: float = 0.0
|
67 |
+
peak_power_sayer: float = 0.0
|
68 |
+
jump_peak_power: float = 0.0
|
69 |
+
repetition_count: int = 0
|
70 |
+
ground_level: Optional[float] = None
|
71 |
+
takeoff_head_y: Optional[float] = None
|
72 |
+
max_head_height_px: Optional[float] = None
|
73 |
+
jump_started: bool = False
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class OverlayConfig:
|
77 |
+
alpha: float = 0.7
|
78 |
+
font: int = cv2.FONT_HERSHEY_SIMPLEX
|
79 |
+
font_scale_title_metric: float = 0.5
|
80 |
+
font_scale_value: float = 0.7
|
81 |
+
font_scale_title_main: float = 1.2
|
82 |
+
font_thickness_metric: int = 1
|
83 |
+
font_thickness_title_main: int = 1
|
84 |
+
line_height_title_metric: int = int(20 * 1.2)
|
85 |
+
line_height_value: int = int(25 * 1.2)
|
86 |
+
padding_vertical: int = int(15 * 1.2)
|
87 |
+
padding_horizontal: int = int(15 * 1.2)
|
88 |
+
border_thickness: int = 1
|
89 |
+
corner_radius: int = 10
|
90 |
+
spacing_horizontal: int = 30
|
91 |
+
title_y_offset: int = 50
|
92 |
+
metrics_y_offset_alto: int = 80
|
93 |
+
|
94 |
+
@dataclass
|
95 |
+
class FramePosition:
|
96 |
+
x: int
|
97 |
+
y: int
|
98 |
+
width: int
|
99 |
+
height: int
|
100 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
101 |
+
"""
|
102 |
+
Process a video file using VitPose for pose estimation and send results to webhook.
|
103 |
+
|
104 |
+
This function processes a video file by applying pose estimation, saving the annotated
|
105 |
+
video to the static directory, and sending the processed video to a webhook endpoint.
|
106 |
|
107 |
+
Args:
|
108 |
+
file_name (str): Path to the input video file
|
109 |
+
vitpose (VitPose): VitPose instance for pose estimation
|
110 |
+
user_id (str): ID of the user uploading the video
|
111 |
+
player_id (str): ID of the player in the video
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
None
|
115 |
+
|
116 |
+
Raises:
|
117 |
+
ValueError: If video file cannot be opened or processed
|
118 |
+
requests.RequestException: If webhook request fails
|
119 |
+
"""
|
120 |
video_path = file_name
|
121 |
|
122 |
contents = open(video_path, "rb").read()
|
|
|
161 |
exercise_id: str,
|
162 |
repetitions) -> dict:
|
163 |
"""
|
164 |
+
Process a high jump exercise video using VitPose for pose estimation and analyze jump metrics.
|
165 |
+
|
166 |
+
This function processes a high jump video by analyzing pose keypoints to calculate
|
167 |
+
jump metrics including height, velocity, and power. Results are sent to an API endpoint.
|
168 |
|
169 |
Args:
|
170 |
+
file_name (str): Path to the input video file
|
171 |
+
vitpose (VitPose): VitPose instance for pose estimation
|
172 |
+
player_data (dict): Dictionary containing player information including:
|
173 |
+
- height: Player height in cm
|
174 |
+
- weight: Player weight in kg
|
175 |
+
- id: Player identifier
|
176 |
+
exercise_id (str): Unique identifier for the exercise
|
177 |
+
repetitions (int): Expected number of jump repetitions in the video
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
dict: Dictionary containing analysis results and video information
|
181 |
+
|
182 |
+
Raises:
|
183 |
+
ValueError: If video processing fails or player data is invalid
|
184 |
+
requests.RequestException: If API request fails
|
185 |
"""
|
186 |
# Use the provided VitPose instance
|
187 |
|
|
|
224 |
exercise_id: str,
|
225 |
video_path: str) -> JSONResponse:
|
226 |
"""
|
227 |
+
Send video analysis results to the API webhook endpoint.
|
228 |
+
|
229 |
+
This function uploads the analyzed video file along with the computed metrics
|
230 |
+
to the API's webhook endpoint for processing and storage.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
results_dict (dict): Dictionary containing analysis results including:
|
234 |
+
- video_analysis: Information about the processed video
|
235 |
+
- repetition_data: List of metrics for each jump repetition
|
236 |
+
player_id (str): Unique identifier for the player
|
237 |
+
exercise_id (str): Unique identifier for the exercise
|
238 |
+
video_path (str): Path to the video file to upload
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
JSONResponse: HTTP response from the API endpoint
|
242 |
+
|
243 |
+
Raises:
|
244 |
+
FileNotFoundError: If the video file doesn't exist
|
245 |
+
requests.RequestException: If the API request fails
|
246 |
+
json.JSONEncodeError: If results_dict cannot be serialized to JSON
|
247 |
"""
|
248 |
url = API_URL + "/excercises/webhooks/video-processed-results"
|
249 |
logger.info(f"Sending video results to {url}")
|
|
|
276 |
return response
|
277 |
|
278 |
|
279 |
+
def setup_video_capture(input_video: str, output_video: str) -> Tuple[cv2.VideoCapture, cv2.VideoWriter, int, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
"""
|
281 |
+
Initialize video capture and writer objects for video processing.
|
282 |
+
|
283 |
+
This function creates OpenCV VideoCapture and VideoWriter objects with matching
|
284 |
+
properties (frame rate, dimensions) for reading from input and writing to output.
|
285 |
|
286 |
Args:
|
287 |
+
input_video (str): Path to the input video file
|
288 |
+
output_video (str): Path for the output video file
|
|
|
|
|
|
|
289 |
|
290 |
Returns:
|
291 |
+
Tuple[cv2.VideoCapture, cv2.VideoWriter, int, int]: A tuple containing:
|
292 |
+
- cap: VideoCapture object for reading input video
|
293 |
+
- out: VideoWriter object for writing output video
|
294 |
+
- width: Video frame width in pixels
|
295 |
+
- height: Video frame height in pixels
|
296 |
+
|
297 |
+
Raises:
|
298 |
+
ValueError: If the input video cannot be opened or read
|
299 |
+
cv2.error: If video writer initialization fails
|
300 |
"""
|
301 |
+
cap = cv2.VideoCapture(input_video)
|
302 |
+
if not cap.isOpened():
|
303 |
+
raise ValueError("Error al abrir el video")
|
304 |
|
305 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
306 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
307 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
308 |
+
out = cv2.VideoWriter(output_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
309 |
|
310 |
+
return cap, out, width, height
|
311 |
+
|
312 |
+
|
313 |
+
def calibrate_pose_detection(model, cap, player_height: float) -> Tuple[float, int, int]:
|
314 |
+
"""
|
315 |
+
Calibrate pose detection scale and reference points using the first video frame.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
This function analyzes the first frame to establish the pixel-to-meter conversion
|
318 |
+
ratio based on the player's known height and detects initial shoulder positions
|
319 |
+
for reference during video processing.
|
|
|
|
|
320 |
|
321 |
+
Args:
|
322 |
+
model: VitPose model instance for pose estimation
|
323 |
+
cap: OpenCV VideoCapture object
|
324 |
+
player_height (float): Actual height of the player in meters
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
Tuple[float, int, int]: A tuple containing:
|
328 |
+
- PX_PER_METER: Conversion factor from pixels to meters
|
329 |
+
- initial_left_shoulder_x: X-coordinate of left shoulder in pixels
|
330 |
+
- initial_right_shoulder_x: X-coordinate of right shoulder in pixels
|
331 |
+
|
332 |
+
Raises:
|
333 |
+
ValueError: If video cannot be read or pose detection fails on first frame
|
334 |
+
IndexError: If required keypoints are not detected in the first frame
|
335 |
+
"""
|
336 |
ret, frame = cap.read()
|
337 |
if not ret:
|
338 |
+
raise ValueError("Error al leer el video")
|
|
|
339 |
|
340 |
+
output = model(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
keypoints = output.keypoints_xy.float().cpu().numpy()
|
342 |
labels = model.pose_estimator_config.label2id
|
343 |
|
|
|
347 |
L_shoulder_keypoint = labels["L_Shoulder"]
|
348 |
R_shoulder_keypoint = labels["R_Shoulder"]
|
349 |
|
350 |
+
PX_PER_METER = None
|
351 |
+
initial_left_shoulder_x = None
|
352 |
+
initial_right_shoulder_x = None
|
353 |
+
|
354 |
+
if (keypoints is not None and len(keypoints) > 0 and len(keypoints[0]) > 0):
|
355 |
kpts_first = keypoints[0]
|
356 |
+
if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0:
|
357 |
initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
|
358 |
PX_PER_METER = initial_person_height_px / player_height
|
359 |
+
if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0:
|
360 |
initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
|
361 |
initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
|
362 |
+
|
363 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
364 |
+
raise ValueError("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
|
|
|
|
|
365 |
|
366 |
+
return PX_PER_METER, initial_left_shoulder_x, initial_right_shoulder_x
|
367 |
+
|
368 |
+
|
369 |
+
def process_frame_keypoints(model, frame):
|
370 |
+
"""
|
371 |
+
Process a video frame and extract human pose keypoints.
|
372 |
+
|
373 |
+
This function applies the pose estimation model to a frame and validates
|
374 |
+
that all required keypoints (nose, ankles, shoulders) are detected and visible.
|
375 |
|
376 |
+
Args:
|
377 |
+
model: VitPose model instance for pose estimation
|
378 |
+
frame: Input video frame as numpy array
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
Tuple containing:
|
382 |
+
- success (bool): True if all required keypoints were detected, False otherwise
|
383 |
+
- current_ankle_y (float or None): Y-coordinate of the highest ankle point if detected
|
384 |
+
- current_head_y (float or None): Y-coordinate of the nose point if detected
|
385 |
+
- keypoints (numpy.ndarray or None): Array of detected keypoints if successful
|
386 |
+
"""
|
387 |
+
try:
|
388 |
+
output = model(frame)
|
389 |
+
keypoints = output.keypoints_xy.float().cpu().numpy()
|
390 |
+
labels = model.pose_estimator_config.label2id
|
391 |
+
|
392 |
+
nose_keypoint = labels["Nose"]
|
393 |
+
L_ankle_keypoint = labels["L_Ankle"]
|
394 |
+
R_ankle_keypoint = labels["R_Ankle"]
|
395 |
+
L_shoulder_keypoint = labels["L_Shoulder"]
|
396 |
+
R_shoulder_keypoint = labels["R_Shoulder"]
|
397 |
+
|
398 |
+
if (keypoints is not None and
|
399 |
+
len(keypoints) > 0 and
|
400 |
+
len(keypoints[0]) > 0 and
|
401 |
+
keypoints.size > 0):
|
|
|
|
|
|
|
|
|
402 |
|
403 |
+
kpts = keypoints[0]
|
404 |
+
|
405 |
+
if (nose_keypoint < len(kpts) and L_ankle_keypoint < len(kpts) and
|
406 |
+
R_ankle_keypoint < len(kpts) and L_shoulder_keypoint < len(kpts) and
|
407 |
+
R_shoulder_keypoint < len(kpts)):
|
408 |
+
|
409 |
+
nose = kpts[nose_keypoint]
|
410 |
+
ankles = [kpts[L_ankle_keypoint], kpts[R_ankle_keypoint]]
|
411 |
+
left_shoulder = kpts[L_shoulder_keypoint]
|
412 |
+
right_shoulder = kpts[R_shoulder_keypoint]
|
413 |
|
414 |
+
if (nose[0] > 0 and nose[1] > 0 and
|
415 |
+
all(a[0] > 0 and a[1] > 0 for a in ankles) and
|
416 |
+
left_shoulder[0] > 0 and left_shoulder[1] > 0 and
|
417 |
+
right_shoulder[0] > 0 and right_shoulder[1] > 0):
|
418 |
|
419 |
+
current_ankle_y = min(a[1] for a in ankles)
|
420 |
+
current_head_y = nose[1]
|
|
|
|
|
421 |
|
422 |
+
return True, current_ankle_y, current_head_y, keypoints
|
423 |
+
|
424 |
+
return False, None, None, None
|
425 |
+
|
426 |
+
except Exception as e:
|
427 |
+
print(f"Error processing frame: {e}")
|
428 |
+
return False, None, None, None
|
429 |
+
|
430 |
+
|
431 |
+
def detect_jump_events(metrics: JumpMetrics, smoothed_ankle_y: float, smoothed_head_y: float,
|
432 |
+
repetition_data: List[Dict], player_height: float, body_mass_kg: float,
|
433 |
+
repetitions: int) -> bool:
|
434 |
+
"""
|
435 |
+
Detect jump start and end events based on ankle position changes.
|
436 |
+
|
437 |
+
This function monitors ankle position relative to ground level to detect when
|
438 |
+
a jump begins and ends. It calculates jump metrics for completed jumps and
|
439 |
+
tracks repetition count.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
metrics (JumpMetrics): Object tracking current jump state and metrics
|
443 |
+
smoothed_ankle_y (float): Current smoothed ankle Y-coordinate
|
444 |
+
smoothed_head_y (float): Current smoothed head Y-coordinate
|
445 |
+
repetition_data (List[Dict]): List to store completed jump data
|
446 |
+
player_height (float): Player height in meters
|
447 |
+
body_mass_kg (float): Player body mass in kilograms
|
448 |
+
repetitions (int): Target number of repetitions to detect
|
449 |
+
|
450 |
+
Returns:
|
451 |
+
bool: True if target number of repetitions has been reached, False otherwise
|
452 |
+
|
453 |
+
Side Effects:
|
454 |
+
- Updates metrics object with jump state
|
455 |
+
- Appends completed jump data to repetition_data list
|
456 |
+
- Modifies metrics.ground_level, metrics.jump_started, metrics.repetition_count
|
457 |
+
"""
|
458 |
+
if metrics.ground_level is None:
|
459 |
+
metrics.ground_level = smoothed_ankle_y
|
460 |
+
metrics.takeoff_head_y = smoothed_head_y
|
461 |
+
return False
|
462 |
+
|
463 |
+
relative_ankle_change = (metrics.ground_level - smoothed_ankle_y) / metrics.ground_level if metrics.ground_level > 0 else 0
|
464 |
+
|
465 |
+
# Detect jump start
|
466 |
+
if not metrics.jump_started and relative_ankle_change > JUMP_THRESHOLD_PERCENT:
|
467 |
+
metrics.jump_started = True
|
468 |
+
metrics.takeoff_head_y = smoothed_head_y
|
469 |
+
metrics.max_jump_height = 0
|
470 |
+
metrics.max_head_height_px = smoothed_head_y
|
471 |
+
metrics.jump_peak_power = 0.0
|
472 |
+
return False
|
473 |
+
|
474 |
+
# Detect jump end
|
475 |
+
if metrics.jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
|
476 |
+
high_jump = calculate_high_jump(player_height, metrics.max_jump_height)
|
477 |
+
repetition_data.append({
|
478 |
+
"repetition": metrics.repetition_count + 1,
|
479 |
+
"distancia_elevada": round(metrics.max_jump_height, 2),
|
480 |
+
"salto_alto": round(high_jump, 2),
|
481 |
+
"potencia_sayer": round(metrics.jump_peak_power, 2)
|
482 |
+
})
|
483 |
+
metrics.repetition_count += 1
|
484 |
+
metrics.jump_started = False
|
485 |
+
|
486 |
+
return metrics.repetition_count >= repetitions
|
487 |
+
|
488 |
+
return False
|
489 |
+
|
490 |
+
|
491 |
+
def calculate_jump_metrics(metrics: JumpMetrics, smoothed_head_y: float, PX_PER_METER: float,
|
492 |
+
body_mass_kg: float, head_y_buffer: List[float], fps: float):
|
493 |
+
"""
|
494 |
+
Calculate jump metrics during an active jump phase.
|
495 |
+
|
496 |
+
This function continuously updates jump metrics while a jump is in progress,
|
497 |
+
tracking maximum jump height, peak power, and other performance indicators.
|
498 |
+
|
499 |
+
Args:
|
500 |
+
metrics (JumpMetrics): Object containing current jump state and metrics
|
501 |
+
smoothed_head_y (float): Current smoothed head Y-coordinate in pixels
|
502 |
+
PX_PER_METER (float): Conversion factor from pixels to meters
|
503 |
+
body_mass_kg (float): Player body mass in kilograms
|
504 |
+
head_y_buffer (List[float]): Buffer of recent head positions for velocity calculation
|
505 |
+
fps (float): Video frame rate in frames per second
|
506 |
+
|
507 |
+
Returns:
|
508 |
+
None
|
509 |
+
|
510 |
+
Side Effects:
|
511 |
+
- Updates metrics.max_jump_height if current jump exceeds previous maximum
|
512 |
+
- Updates metrics.max_head_height_px with lowest Y-coordinate (highest position)
|
513 |
+
- Updates metrics.jump_peak_power and metrics.peak_power_sayer with calculated power values
|
514 |
+
"""
|
515 |
+
if not metrics.jump_started:
|
516 |
+
return
|
517 |
+
|
518 |
+
relative_jump = (metrics.takeoff_head_y - smoothed_head_y) / PX_PER_METER
|
519 |
+
if relative_jump > metrics.max_jump_height:
|
520 |
+
metrics.max_jump_height = relative_jump
|
521 |
+
|
522 |
+
if smoothed_head_y < metrics.max_head_height_px:
|
523 |
+
metrics.max_head_height_px = smoothed_head_y
|
524 |
+
|
525 |
+
if relative_jump:
|
526 |
+
current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
|
527 |
+
if current_power > metrics.jump_peak_power:
|
528 |
+
metrics.jump_peak_power = current_power
|
529 |
+
if current_power > metrics.peak_power_sayer:
|
530 |
+
metrics.peak_power_sayer = current_power
|
531 |
+
|
532 |
+
|
533 |
+
def calculate_velocity(head_y_buffer: List[float], PX_PER_METER: float, fps: float) -> float:
|
534 |
+
"""
|
535 |
+
Calculate vertical velocity based on head position changes over time.
|
536 |
+
|
537 |
+
This function computes the vertical velocity by analyzing the change in head
|
538 |
+
position over a specified time window, converting from pixel coordinates to
|
539 |
+
real-world units.
|
540 |
+
|
541 |
+
Args:
|
542 |
+
head_y_buffer (List[float]): Buffer containing recent head Y-coordinates in pixels
|
543 |
+
PX_PER_METER (float): Conversion factor from pixels to meters
|
544 |
+
fps (float): Video frame rate in frames per second
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
float: Vertical velocity in meters per second (positive = upward motion)
|
548 |
+
Returns 0.0 if calculation cannot be performed
|
549 |
+
|
550 |
+
Note:
|
551 |
+
- Requires at least VELOCITY_WINDOW frames in the buffer
|
552 |
+
- Velocity is calculated as the change from oldest to newest position
|
553 |
+
- Y-coordinates decrease as objects move upward in image coordinates
|
554 |
+
"""
|
555 |
+
if len(head_y_buffer) < VELOCITY_WINDOW or PX_PER_METER is None or fps <= 0:
|
556 |
+
return 0.0
|
557 |
+
|
558 |
+
delta_y_pixels = head_y_buffer[0] - head_y_buffer[-1]
|
559 |
+
delta_y_meters = delta_y_pixels / PX_PER_METER
|
560 |
+
delta_t = VELOCITY_WINDOW / fps
|
561 |
+
return delta_y_meters / delta_t
|
562 |
+
|
563 |
+
|
564 |
+
def draw_skeleton(frame, keypoints):
|
565 |
+
"""
|
566 |
+
Draw human pose skeleton on a video frame.
|
567 |
+
|
568 |
+
This function visualizes the detected pose by drawing keypoints as circles
|
569 |
+
and connecting them with lines according to the human body structure.
|
570 |
+
|
571 |
+
Args:
|
572 |
+
frame (numpy.ndarray): Video frame to draw on (modified in-place)
|
573 |
+
keypoints (numpy.ndarray or None): Array of detected keypoints with shape (N, 17, 2)
|
574 |
+
where N is batch size, 17 is number of keypoints,
|
575 |
+
and 2 represents (x, y) coordinates
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
None
|
579 |
+
|
580 |
+
Side Effects:
|
581 |
+
- Modifies the input frame by drawing circles for keypoints
|
582 |
+
- Draws lines connecting related body parts (skeleton connections)
|
583 |
+
- Uses GREEN color for keypoints and YELLOW for connections
|
584 |
+
|
585 |
+
Note:
|
586 |
+
- Safely handles None or empty keypoints arrays
|
587 |
+
- Only draws keypoints and connections with positive coordinates
|
588 |
+
- Uses SKELETON_CONNECTIONS constant for body part relationships
|
589 |
+
"""
|
590 |
+
if keypoints is None or len(keypoints) == 0 or len(keypoints[0]) == 0:
|
591 |
+
return
|
592 |
+
|
593 |
+
try:
|
594 |
+
kpts = keypoints[0]
|
595 |
+
|
596 |
+
# Draw points
|
597 |
+
for point in kpts:
|
598 |
+
if point[0] > 0 and point[1] > 0:
|
599 |
+
cv2.circle(frame, (int(point[0]), int(point[1])), 5, GREEN, -1)
|
600 |
+
|
601 |
+
# Draw connections
|
602 |
+
for connection in SKELETON_CONNECTIONS:
|
603 |
+
start_name, end_name = connection
|
604 |
+
start_idx = KEYPOINT_INDICES[start_name]
|
605 |
+
end_idx = KEYPOINT_INDICES[end_name]
|
606 |
+
|
607 |
+
if (start_idx < len(kpts) and end_idx < len(kpts) and
|
608 |
+
kpts[start_idx][0] > 0 and kpts[start_idx][1] > 0 and
|
609 |
+
kpts[end_idx][0] > 0 and kpts[end_idx][1] > 0):
|
610 |
+
|
611 |
+
start_point = (int(kpts[start_idx][0]), int(kpts[start_idx][1]))
|
612 |
+
end_point = (int(kpts[end_idx][0]), int(kpts[end_idx][1]))
|
613 |
+
cv2.line(frame, start_point, end_point, YELLOW, 2)
|
614 |
+
|
615 |
+
except Exception as e:
|
616 |
+
print(f"Error drawing skeleton: {e}")
|
617 |
+
|
618 |
+
|
619 |
+
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
def analyze_jump_video(model: VitPose,
|
624 |
+
input_video: str,
|
625 |
+
output_video: str,
|
626 |
+
player_height: float,
|
627 |
+
body_mass_kg: float,
|
628 |
+
repetitions: int) -> dict | None:
|
629 |
+
"""
|
630 |
+
Analyze a jump video to calculate various jump metrics.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
model: VitPose model instance
|
634 |
+
input_video: Path to input video
|
635 |
+
output_video: Path to output video
|
636 |
+
player_height: Height of the person in meters
|
637 |
+
body_mass_kg: Weight of the person in kg
|
638 |
+
repetitions: Expected number of repetitions
|
639 |
+
|
640 |
+
Returns:
|
641 |
+
Dictionary containing jump metrics and video analysis data
|
642 |
+
"""
|
643 |
+
try:
|
644 |
+
# Setup video capture and writer
|
645 |
+
cap, out, width, height = setup_video_capture(input_video, output_video)
|
646 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
647 |
+
|
648 |
+
# Calibrate pose detection
|
649 |
+
PX_PER_METER, initial_left_shoulder_x, initial_right_shoulder_x = calibrate_pose_detection(
|
650 |
+
model, cap, player_height)
|
651 |
+
|
652 |
+
# Reset video for processing
|
653 |
+
cap.release()
|
654 |
+
cap = cv2.VideoCapture(input_video)
|
655 |
+
|
656 |
+
# Initialize tracking variables
|
657 |
+
metrics = JumpMetrics()
|
658 |
+
repetition_data = []
|
659 |
+
head_y_history = []
|
660 |
+
ankle_y_history = []
|
661 |
+
head_y_buffer = []
|
662 |
+
last_detected_ankles_y = None
|
663 |
+
|
664 |
+
# Process each frame
|
665 |
+
while cap.isOpened():
|
666 |
+
ret, frame = cap.read()
|
667 |
+
if not ret:
|
668 |
+
break
|
669 |
+
|
670 |
+
annotated_frame = frame.copy()
|
671 |
+
if metrics.repetition_count >= repetitions:
|
672 |
+
out.write(annotated_frame)
|
673 |
+
continue
|
674 |
+
|
675 |
+
# Process frame keypoints
|
676 |
+
keypoints_valid, current_ankle_y, current_head_y, keypoints = process_frame_keypoints(model, annotated_frame)
|
677 |
+
|
678 |
+
if keypoints_valid:
|
679 |
+
last_detected_ankles_y = current_ankle_y
|
680 |
+
|
681 |
+
# Smooth positions
|
682 |
+
ankle_y_history.append(current_ankle_y)
|
683 |
+
if len(ankle_y_history) > SMOOTHING_WINDOW:
|
684 |
+
ankle_y_history.pop(0)
|
685 |
+
smoothed_ankle_y = np.mean(ankle_y_history)
|
686 |
+
|
687 |
+
head_y_history.append(current_head_y)
|
688 |
+
if len(head_y_history) > SMOOTHING_WINDOW:
|
689 |
+
head_y_history.pop(0)
|
690 |
+
smoothed_head_y = np.mean(head_y_history)
|
691 |
+
|
692 |
+
# Calculate velocity
|
693 |
+
head_y_buffer.append(smoothed_head_y)
|
694 |
+
if len(head_y_buffer) > VELOCITY_WINDOW:
|
695 |
+
head_y_buffer.pop(0)
|
696 |
+
metrics.velocity_vertical = calculate_velocity(head_y_buffer, PX_PER_METER, fps)
|
697 |
+
|
698 |
+
# Detect jump events
|
699 |
+
should_stop = detect_jump_events(metrics, smoothed_ankle_y, smoothed_head_y,
|
700 |
+
repetition_data, player_height, body_mass_kg, repetitions)
|
701 |
+
if should_stop:
|
702 |
+
break
|
703 |
+
|
704 |
+
# Calculate jump metrics during jump
|
705 |
+
calculate_jump_metrics(metrics, smoothed_head_y, PX_PER_METER, body_mass_kg, head_y_buffer, fps)
|
706 |
else:
|
|
|
|
|
|
|
707 |
last_detected_ankles_y = None
|
708 |
+
metrics.velocity_vertical = 0.0
|
709 |
+
|
710 |
+
# Draw overlay and skeleton
|
711 |
+
high_jump = calculate_high_jump(player_height, metrics.max_jump_height)
|
712 |
+
annotated_frame = draw_metrics_overlay(
|
713 |
+
frame=annotated_frame,
|
714 |
+
max_jump_height=metrics.max_jump_height,
|
715 |
+
salto_alto=high_jump,
|
716 |
+
velocity_vertical=metrics.velocity_vertical,
|
717 |
+
peak_power_sayer=metrics.peak_power_sayer,
|
718 |
+
repetition_count=metrics.repetition_count,
|
719 |
+
last_detected_ankles_y=last_detected_ankles_y,
|
720 |
+
initial_left_shoulder_x=initial_left_shoulder_x,
|
721 |
+
initial_right_shoulder_x=initial_right_shoulder_x,
|
722 |
+
width=width,
|
723 |
+
height=height,
|
724 |
+
colors=COLORS,
|
725 |
+
metrics_below_feet_offset=METRICS_BELOW_FEET_OFFSET,
|
726 |
+
horizontal_offset_factor=HORIZONTAL_OFFSET_FACTOR
|
727 |
+
)
|
728 |
+
|
729 |
+
if keypoints_valid and keypoints is not None:
|
730 |
+
draw_skeleton(annotated_frame, keypoints)
|
731 |
+
|
732 |
+
out.write(annotated_frame)
|
733 |
+
|
734 |
+
# Prepare results
|
735 |
+
results_dict = {
|
736 |
+
"video_analysis": {
|
737 |
+
"output_video": str(output_video),
|
|
|
|
|
|
|
738 |
},
|
739 |
+
"repetition_data": [
|
740 |
+
{
|
741 |
+
"repetition": int(rep["repetition"]),
|
742 |
+
"distancia_elevada": float(rep["distancia_elevada"]),
|
743 |
+
"salto_alto": float(rep["salto_alto"]),
|
744 |
+
"potencia_sayer": float(rep["potencia_sayer"])
|
745 |
+
} for rep in repetition_data
|
746 |
+
]
|
747 |
+
}
|
748 |
|
749 |
+
cap.release()
|
750 |
+
out.release()
|
751 |
+
|
752 |
+
return results_dict
|
753 |
+
|
754 |
+
except Exception as e:
|
755 |
+
print(f"Error in analyze_jump_video: {e}")
|
756 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
757 |
|
758 |
|
759 |
def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
|
|
|
786 |
return player_height + max_jump_height
|
787 |
|
788 |
|
789 |
+
def draw_rounded_rect(img, pt1, pt2, color, thickness=-1, lineType=cv2.LINE_AA, radius=10):
|
790 |
+
"""
|
791 |
+
Draw a rectangle with rounded corners on an image.
|
792 |
+
|
793 |
+
This function creates a rounded rectangle by drawing four corner ellipses
|
794 |
+
and connecting them with straight rectangular sections.
|
795 |
+
|
796 |
+
Args:
|
797 |
+
img (numpy.ndarray): Image to draw on (modified in-place)
|
798 |
+
pt1 (tuple): Top-left corner coordinates (x, y)
|
799 |
+
pt2 (tuple): Bottom-right corner coordinates (x, y)
|
800 |
+
color (tuple): BGR color tuple (B, G, R)
|
801 |
+
thickness (int, optional): Line thickness. -1 for filled rectangle. Defaults to -1.
|
802 |
+
lineType (int, optional): Type of line drawing. Defaults to cv2.LINE_AA.
|
803 |
+
radius (int, optional): Corner radius in pixels. Defaults to 10.
|
804 |
+
|
805 |
+
Returns:
|
806 |
+
numpy.ndarray: The modified image with rounded rectangle drawn
|
807 |
+
|
808 |
+
Note:
|
809 |
+
- If radius is 0, draws a regular rectangle
|
810 |
+
- For filled rectangles, use thickness=-1
|
811 |
+
- Corner ellipses are drawn at each corner with specified radius
|
812 |
+
- Rectangle sections fill the gaps between ellipses
|
813 |
+
"""
|
814 |
+
x1, y1 = pt1
|
815 |
+
x2, y2 = pt2
|
816 |
+
if radius > 0:
|
817 |
+
img = cv2.ellipse(img, (x1 + radius, y1 + radius), (radius, radius), 0, 0, 90, color, thickness, lineType)
|
818 |
+
img = cv2.ellipse(img, (x2 - radius, y1 + radius), (radius, radius), 0, 90, 180, color, thickness, lineType)
|
819 |
+
img = cv2.ellipse(img, (x2 - radius, y2 - radius), (radius, radius), 0, 180, 270, color, thickness, lineType)
|
820 |
+
img = cv2.ellipse(img, (x1 + radius, y2 - radius), (radius, radius), 0, 270, 360, color, thickness, lineType)
|
821 |
+
|
822 |
+
img = cv2.rectangle(img, (x1, y1 + radius), (x2, y2 - radius), color, thickness, lineType)
|
823 |
+
img = cv2.rectangle(img, (x1 + radius, y1), (x2 - radius, y2), color, thickness, lineType)
|
824 |
+
else:
|
825 |
+
img = cv2.rectangle(img, pt1, pt2, color, thickness, lineType)
|
826 |
+
return img
|
827 |
+
|
828 |
+
|
829 |
+
def draw_main_title(overlay, config: OverlayConfig, width: int, colors: Dict):
|
830 |
+
"""
|
831 |
+
Draw the main title text centered at the top of the video frame.
|
832 |
+
|
833 |
+
This function renders "Ejercicio de Salto" (Jump Exercise) as the main title
|
834 |
+
using specified font configuration and centers it horizontally.
|
835 |
+
|
836 |
+
Args:
|
837 |
+
overlay (numpy.ndarray): Image overlay to draw on (modified in-place)
|
838 |
+
config (OverlayConfig): Configuration object containing font settings
|
839 |
+
width (int): Width of the video frame in pixels
|
840 |
+
colors (Dict): Dictionary containing color definitions
|
841 |
+
|
842 |
+
Returns:
|
843 |
+
None
|
844 |
+
|
845 |
+
Side Effects:
|
846 |
+
- Draws text on the overlay image using white color
|
847 |
+
- Text is positioned at the top center of the frame
|
848 |
+
- Uses config.font_scale_title_main and config.font_thickness_title_main
|
849 |
+
"""
|
850 |
+
title_text = "Ejercicio de Salto"
|
851 |
+
title_text_size = cv2.getTextSize(title_text, config.font, config.font_scale_title_main, config.font_thickness_title_main)[0]
|
852 |
+
title_x = (width - title_text_size[0]) // 2
|
853 |
+
title_y = config.title_y_offset
|
854 |
+
cv2.putText(overlay, title_text, (title_x, title_y), config.font, config.font_scale_title_main,
|
855 |
+
colors["white"], config.font_thickness_title_main, cv2.LINE_AA)
|
856 |
+
|
857 |
+
|
858 |
+
def calculate_metric_box_size(title: str, value: str, config: OverlayConfig) -> Tuple[int, int]:
|
859 |
+
"""
|
860 |
+
Calculate the required dimensions for a metric display box.
|
861 |
+
|
862 |
+
This function determines the width and height needed to display a metric
|
863 |
+
with its title and value, including padding and spacing requirements.
|
864 |
+
|
865 |
+
Args:
|
866 |
+
title (str): The metric title text (e.g., "SALTO ALTO")
|
867 |
+
value (str): The metric value text (e.g., "2.15 m")
|
868 |
+
config (OverlayConfig): Configuration object with font and spacing settings
|
869 |
+
|
870 |
+
Returns:
|
871 |
+
Tuple[int, int]: A tuple containing:
|
872 |
+
- bg_width: Required width in pixels for the metric box
|
873 |
+
- bg_height: Required height in pixels for the metric box
|
874 |
+
|
875 |
+
Note:
|
876 |
+
- Width is based on the maximum of title and value text widths
|
877 |
+
- Height accounts for both text lines plus vertical padding
|
878 |
+
- Includes horizontal padding on both sides
|
879 |
+
"""
|
880 |
+
title_size = cv2.getTextSize(title, config.font, config.font_scale_title_metric, config.font_thickness_metric)[0]
|
881 |
+
value_size = cv2.getTextSize(value, config.font, config.font_scale_value, config.font_thickness_metric)[0]
|
882 |
+
|
883 |
+
bg_width = max(title_size[0], value_size[0]) + 2 * config.padding_horizontal
|
884 |
+
bg_height = config.line_height_title_metric + config.line_height_value + 2 * config.padding_vertical
|
885 |
+
|
886 |
+
return bg_width, bg_height
|
887 |
+
|
888 |
+
|
889 |
+
def draw_metric_box(overlay, title: str, value: str, x: int, y: int, bg_width: int, bg_height: int,
|
890 |
+
config: OverlayConfig, colors: Dict):
|
891 |
+
"""
|
892 |
+
Draw a styled metric box with title and value text.
|
893 |
+
|
894 |
+
This function creates a rounded rectangle background and draws metric information
|
895 |
+
with proper text alignment and styling for video overlay display.
|
896 |
+
|
897 |
+
Args:
|
898 |
+
overlay (numpy.ndarray): Image overlay to draw on (modified in-place)
|
899 |
+
title (str): Metric title text (displayed in smaller font)
|
900 |
+
value (str): Metric value text (displayed in larger font)
|
901 |
+
x (int): X-coordinate of box top-left corner
|
902 |
+
y (int): Y-coordinate of box top-left corner
|
903 |
+
bg_width (int): Width of the background box in pixels
|
904 |
+
bg_height (int): Height of the background box in pixels
|
905 |
+
config (OverlayConfig): Configuration object with styling settings
|
906 |
+
colors (Dict): Dictionary containing color definitions
|
907 |
+
|
908 |
+
Returns:
|
909 |
+
numpy.ndarray: The modified overlay with the metric box drawn
|
910 |
+
|
911 |
+
Side Effects:
|
912 |
+
- Draws a rounded rectangle background with gray fill and white border
|
913 |
+
- Centers title text in light gray color
|
914 |
+
- Centers value text in white color below the title
|
915 |
+
- Uses different font scales for title and value
|
916 |
+
"""
|
917 |
+
pt1 = (x, y)
|
918 |
+
pt2 = (x + bg_width, y + bg_height)
|
919 |
+
|
920 |
+
# Draw background
|
921 |
+
overlay = draw_rounded_rect(overlay, pt1, pt2, colors["gray"], cv2.FILLED, cv2.LINE_AA, config.corner_radius)
|
922 |
+
cv2.rectangle(overlay, pt1, pt2, colors["white"], config.border_thickness, cv2.LINE_AA)
|
923 |
+
|
924 |
+
# Draw title
|
925 |
+
title_size = cv2.getTextSize(title, config.font, config.font_scale_title_metric, config.font_thickness_metric)[0]
|
926 |
+
title_x = x + (bg_width - title_size[0]) // 2
|
927 |
+
title_y = y + config.padding_vertical + config.line_height_title_metric // 2 + 2
|
928 |
+
cv2.putText(overlay, title, (title_x, title_y), config.font, config.font_scale_title_metric,
|
929 |
+
colors["light_gray"], config.font_thickness_metric, cv2.LINE_AA)
|
930 |
+
|
931 |
+
# Draw value
|
932 |
+
value_size = cv2.getTextSize(value, config.font, config.font_scale_value, config.font_thickness_metric)[0]
|
933 |
+
value_x = x + (bg_width - value_size[0]) // 2
|
934 |
+
value_y = y + config.padding_vertical + config.line_height_title_metric + config.line_height_value // 2 + 5
|
935 |
+
cv2.putText(overlay, value, (value_x, value_y), config.font, config.font_scale_value,
|
936 |
+
colors["white"], config.font_thickness_metric, cv2.LINE_AA)
|
937 |
+
|
938 |
+
return overlay
|
939 |
+
|
940 |
+
|
941 |
+
def calculate_positions(width: int, height: int, last_detected_ankles_y: Optional[float],
|
942 |
+
initial_left_shoulder_x: Optional[int], initial_right_shoulder_x: Optional[int],
|
943 |
+
config: OverlayConfig, horizontal_offset_factor: float,
|
944 |
+
metrics_below_feet_offset: int) -> Dict[str, Tuple[int, int]]:
|
945 |
+
"""
|
946 |
+
Calculate optimal positions for all metric display boxes on the video frame.
|
947 |
+
|
948 |
+
This function determines where to place metric boxes based on detected body positions
|
949 |
+
to avoid overlapping with the person while maintaining good visibility.
|
950 |
+
|
951 |
+
Args:
|
952 |
+
width (int): Video frame width in pixels
|
953 |
+
height (int): Video frame height in pixels
|
954 |
+
last_detected_ankles_y (Optional[float]): Y-coordinate of last detected ankles
|
955 |
+
initial_left_shoulder_x (Optional[int]): X-coordinate of left shoulder reference
|
956 |
+
initial_right_shoulder_x (Optional[int]): X-coordinate of right shoulder reference
|
957 |
+
config (OverlayConfig): Configuration object with layout settings
|
958 |
+
horizontal_offset_factor (float): Factor for horizontal positioning relative to shoulders
|
959 |
+
metrics_below_feet_offset (int): Vertical offset below feet for metric placement
|
960 |
+
|
961 |
+
Returns:
|
962 |
+
Dict[str, Tuple[int, int]]: Dictionary mapping metric names to (x, y) positions:
|
963 |
+
- "relativo": Position for relative jump metric
|
964 |
+
- "alto": Position for high jump metric
|
965 |
+
- "reps": Position for repetitions counter
|
966 |
+
- "velocidad": Position for velocity metric (if ankles detected)
|
967 |
+
- "potencia": Position for power metric (if ankles detected)
|
968 |
+
|
969 |
+
Note:
|
970 |
+
- Positions are calculated to avoid overlapping with the detected person
|
971 |
+
- Some metrics are positioned relative to body parts when available
|
972 |
+
- Falls back to default positions when body parts are not detected
|
973 |
+
"""
|
974 |
+
positions = {}
|
975 |
+
|
976 |
+
# Relative jump box (left side, dynamically positioned)
|
977 |
+
relativo_bg_width, relativo_bg_height = calculate_metric_box_size("SALTO RELATIVO", "0.00 m", config)
|
978 |
+
x_relativo = 20
|
979 |
+
|
980 |
+
if last_detected_ankles_y is not None:
|
981 |
+
y_relativo = int(last_detected_ankles_y - relativo_bg_height - 10)
|
982 |
+
if y_relativo < config.title_y_offset + 50:
|
983 |
+
y_relativo = int(last_detected_ankles_y + metrics_below_feet_offset)
|
984 |
+
else:
|
985 |
+
y_relativo = height - 150
|
986 |
+
|
987 |
+
positions["relativo"] = (x_relativo, y_relativo)
|
988 |
+
|
989 |
+
# High jump box (top right)
|
990 |
+
alto_bg_width, alto_bg_height = calculate_metric_box_size("SALTO ALTO", "0.00 m", config)
|
991 |
+
x_alto = width - alto_bg_width - 20
|
992 |
+
|
993 |
+
if initial_right_shoulder_x is not None:
|
994 |
+
available_space = width - initial_right_shoulder_x
|
995 |
+
x_alto_calculated = initial_right_shoulder_x + int(available_space * (1 - horizontal_offset_factor)) - alto_bg_width
|
996 |
+
if (x_alto_calculated > x_relativo + relativo_bg_width + config.spacing_horizontal + 10 and
|
997 |
+
x_alto_calculated + alto_bg_width < width - 10):
|
998 |
+
x_alto = x_alto_calculated
|
999 |
+
|
1000 |
+
positions["alto"] = (x_alto, config.metrics_y_offset_alto)
|
1001 |
+
|
1002 |
+
# Repetitions box (below relative jump)
|
1003 |
+
positions["reps"] = (x_relativo, y_relativo + relativo_bg_height + 10)
|
1004 |
+
|
1005 |
+
# Velocity and power boxes (centered below feet)
|
1006 |
+
if last_detected_ankles_y is not None:
|
1007 |
+
velocidad_bg_width, velocidad_bg_height = calculate_metric_box_size("VELOCIDAD VERTICAL", "0.00 m/s", config)
|
1008 |
+
x_velocidad = int(width / 2 - velocidad_bg_width / 2)
|
1009 |
+
y_velocidad = int(last_detected_ankles_y + metrics_below_feet_offset + velocidad_bg_height)
|
1010 |
+
|
1011 |
+
positions["velocidad"] = (x_velocidad, y_velocidad - velocidad_bg_height)
|
1012 |
+
positions["potencia"] = (x_velocidad, y_velocidad + 5)
|
1013 |
+
|
1014 |
+
return positions
|
1015 |
+
|
1016 |
+
|
1017 |
def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,
|
1018 |
repetition_count, last_detected_ankles_y, initial_left_shoulder_x,
|
1019 |
initial_right_shoulder_x, width, height, colors, metrics_below_feet_offset=20,
|
|
|
1040 |
Returns:
|
1041 |
Frame with metrics overlay
|
1042 |
"""
|
1043 |
+
overlay = frame.copy()
|
1044 |
+
config = OverlayConfig()
|
1045 |
|
1046 |
+
# Draw main title
|
1047 |
+
draw_main_title(overlay, config, width, colors)
|
1048 |
|
1049 |
+
# Calculate positions for all metric boxes
|
1050 |
+
positions = calculate_positions(width, height, last_detected_ankles_y,
|
1051 |
+
initial_left_shoulder_x, initial_right_shoulder_x,
|
1052 |
+
config, horizontal_offset_factor, metrics_below_feet_offset)
|
1053 |
|
1054 |
+
# Draw relative jump box
|
1055 |
+
if "relativo" in positions:
|
1056 |
+
relativo_value = f"{max(0, max_jump_height):.2f} m"
|
1057 |
+
bg_width, bg_height = calculate_metric_box_size("SALTO RELATIVO", relativo_value, config)
|
1058 |
+
x, y = positions["relativo"]
|
1059 |
+
overlay = draw_metric_box(overlay, "SALTO RELATIVO", relativo_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1060 |
|
1061 |
+
# Draw high jump box
|
1062 |
+
if "alto" in positions:
|
1063 |
+
alto_value = f"{max(0, salto_alto):.2f} m"
|
1064 |
+
bg_width, bg_height = calculate_metric_box_size("SALTO ALTO", alto_value, config)
|
1065 |
+
x, y = positions["alto"]
|
1066 |
+
overlay = draw_metric_box(overlay, "SALTO ALTO", alto_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1067 |
|
1068 |
+
# Draw repetitions box
|
1069 |
+
if "reps" in positions:
|
1070 |
+
reps_value = f"{repetition_count}"
|
1071 |
+
bg_width, bg_height = calculate_metric_box_size("REPETICIONES", reps_value, config)
|
1072 |
+
x, y = positions["reps"]
|
1073 |
+
overlay = draw_metric_box(overlay, "REPETICIONES", reps_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1074 |
|
1075 |
+
# Draw velocity box (only if ankles detected)
|
1076 |
+
if "velocidad" in positions:
|
1077 |
+
velocidad_value = f"{abs(velocity_vertical):.2f} m/s"
|
1078 |
+
bg_width, bg_height = calculate_metric_box_size("VELOCIDAD VERTICAL", velocidad_value, config)
|
1079 |
+
x, y = positions["velocidad"]
|
1080 |
+
overlay = draw_metric_box(overlay, "VELOCIDAD VERTICAL", velocidad_value, x, y, bg_width, bg_height, config, colors)
|
1081 |
+
|
1082 |
+
# Draw power box (only if ankles detected)
|
1083 |
+
if "potencia" in positions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1084 |
potencia_value = f"{peak_power_sayer:.2f} W"
|
1085 |
+
bg_width, bg_height = calculate_metric_box_size("POTENCIA SAYER", potencia_value, config)
|
1086 |
+
x, y = positions["potencia"]
|
1087 |
+
overlay = draw_metric_box(overlay, "POTENCIA SAYER", potencia_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1088 |
|
1089 |
# Blend overlay with original frame
|
1090 |
+
result = cv2.addWeighted(overlay, config.alpha, frame, 1 - config.alpha, 0)
|
1091 |
return result
|