|
import logging |
|
from fastapi import APIRouter, Depends, HTTPException |
|
from jinja2 import Environment |
|
from litellm.router import Router |
|
from dependencies import get_llm_router, get_prompt_templates |
|
from schemas import _ReqGroupingCategory, _ReqGroupingOutput, ReqGroupingCategory, ReqGroupingRequest, ReqGroupingResponse, ReqSearchLLMResponse, ReqSearchRequest, ReqSearchResponse |
|
|
|
|
|
router = APIRouter(tags=["requirement processing"]) |
|
|
|
|
|
@router.post("/get_reqs_from_query", response_model=ReqSearchResponse) |
|
def find_requirements_from_problem_description(req: ReqSearchRequest, llm_router: Router = Depends(get_llm_router)): |
|
"""Finds the requirements that adress a given problem description from an extracted list""" |
|
|
|
requirements = req.requirements |
|
query = req.query |
|
|
|
requirements_text = "\n".join( |
|
[f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements]) |
|
resp_ai = llm_router.completion( |
|
model="gemini-v2", |
|
messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}], |
|
response_format=ReqSearchLLMResponse |
|
) |
|
|
|
out_llm = ReqSearchLLMResponse.model_validate_json( |
|
resp_ai.choices[0].message.content).selected |
|
|
|
logging.info(f"Found {len(out_llm)} reqs matching case.") |
|
|
|
if max(out_llm) > len(requirements) - 1: |
|
raise HTTPException( |
|
status_code=500, detail="LLM error : Generated a wrong index, please try again.") |
|
|
|
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm]) |
|
|
|
|
|
@router.post("/categorize_requirements") |
|
async def categorize_reqs(params: ReqGroupingRequest, prompt_env: Environment = Depends(get_prompt_templates), llm_router: Router = Depends(get_llm_router)) -> ReqGroupingResponse: |
|
"""Categorize the given service requirements into categories""" |
|
|
|
MAX_ATTEMPTS = 5 |
|
|
|
categories: list[_ReqGroupingCategory] = [] |
|
messages = [] |
|
|
|
|
|
req_prompt = await prompt_env.get_template("classify.txt").render_async(**{ |
|
"requirements": [rq.model_dump() for rq in params.requirements], |
|
"max_n_categories": params.max_n_categories, |
|
"response_schema": _ReqGroupingOutput.model_json_schema()}) |
|
|
|
|
|
messages.append({"role": "user", "content": req_prompt}) |
|
|
|
|
|
for attempt in range(MAX_ATTEMPTS): |
|
req_completion = await llm_router.acompletion(model="gemini-v2", messages=messages, response_format=_ReqGroupingOutput) |
|
output = _ReqGroupingOutput.model_validate_json( |
|
req_completion.choices[0].message.content) |
|
|
|
|
|
valid_ids_universe = set(range(0, len(params.requirements))) |
|
assigned_ids = { |
|
req_id for cat in output.categories for req_id in cat.items} |
|
|
|
|
|
valid_assigned_ids = assigned_ids.intersection(valid_ids_universe) |
|
|
|
|
|
unassigned_ids = valid_ids_universe - valid_assigned_ids |
|
|
|
if len(unassigned_ids) == 0: |
|
categories.extend(output.categories) |
|
break |
|
else: |
|
messages.append(req_completion.choices[0].message) |
|
messages.append( |
|
{"role": "user", "content": f"You haven't categorized the following requirements in at least one category {unassigned_ids}. Please do so."}) |
|
|
|
if attempt == MAX_ATTEMPTS - 1: |
|
raise Exception("Failed to classify all requirements") |
|
|
|
|
|
|
|
final_categories = [] |
|
for idx, cat in enumerate(output.categories): |
|
final_categories.append(ReqGroupingCategory( |
|
id=idx, |
|
title=cat.title, |
|
requirements=[params.requirements[i] |
|
for i in cat.items if i < len(params.requirements)] |
|
)) |
|
|
|
return ReqGroupingResponse(categories=final_categories) |
|
|