import logging from fastapi import APIRouter, Depends, HTTPException from jinja2 import Environment from litellm.router import Router from dependencies import get_llm_router, get_prompt_templates from schemas import _ReqGroupingCategory, _ReqGroupingOutput, ReqGroupingCategory, ReqGroupingRequest, ReqGroupingResponse, ReqSearchLLMResponse, ReqSearchRequest, ReqSearchResponse # Router for requirement processing router = APIRouter(tags=["requirement processing"]) @router.post("/get_reqs_from_query", response_model=ReqSearchResponse) def find_requirements_from_problem_description(req: ReqSearchRequest, llm_router: Router = Depends(get_llm_router)): """Finds the requirements that adress a given problem description from an extracted list""" requirements = req.requirements query = req.query requirements_text = "\n".join( [f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements]) resp_ai = llm_router.completion( model="gemini-v2", messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}], response_format=ReqSearchLLMResponse ) out_llm = ReqSearchLLMResponse.model_validate_json( resp_ai.choices[0].message.content).selected logging.info(f"Found {len(out_llm)} reqs matching case.") if max(out_llm) > len(requirements) - 1: raise HTTPException( status_code=500, detail="LLM error : Generated a wrong index, please try again.") return ReqSearchResponse(requirements=[requirements[i] for i in out_llm]) @router.post("/categorize_requirements") async def categorize_reqs(params: ReqGroupingRequest, prompt_env: Environment = Depends(get_prompt_templates), llm_router: Router = Depends(get_llm_router)) -> ReqGroupingResponse: """Categorize the given service requirements into categories""" MAX_ATTEMPTS = 5 categories: list[_ReqGroupingCategory] = [] messages = [] # categorize the requirements using their indices req_prompt = await prompt_env.get_template("classify.txt").render_async(**{ "requirements": [rq.model_dump() for rq in params.requirements], "max_n_categories": params.max_n_categories, "response_schema": _ReqGroupingOutput.model_json_schema()}) # add system prompt with requirements messages.append({"role": "user", "content": req_prompt}) # ensure all requirements items are processed for attempt in range(MAX_ATTEMPTS): req_completion = await llm_router.acompletion(model="gemini-v2", messages=messages, response_format=_ReqGroupingOutput) output = _ReqGroupingOutput.model_validate_json( req_completion.choices[0].message.content) # quick check to ensure no requirement was left out by the LLM by checking all IDs are contained in at least a single category valid_ids_universe = set(range(0, len(params.requirements))) assigned_ids = { req_id for cat in output.categories for req_id in cat.items} # keep only non-hallucinated, valid assigned ids valid_assigned_ids = assigned_ids.intersection(valid_ids_universe) # check for remaining requirements assigned to none of the categories unassigned_ids = valid_ids_universe - valid_assigned_ids if len(unassigned_ids) == 0: categories.extend(output.categories) break else: messages.append(req_completion.choices[0].message) messages.append( {"role": "user", "content": f"You haven't categorized the following requirements in at least one category {unassigned_ids}. Please do so."}) if attempt == MAX_ATTEMPTS - 1: raise Exception("Failed to classify all requirements") # build the final category objects # remove the invalid (likely hallucinated) requirement IDs final_categories = [] for idx, cat in enumerate(output.categories): final_categories.append(ReqGroupingCategory( id=idx, title=cat.title, requirements=[params.requirements[i] for i in cat.items if i < len(params.requirements)] )) return ReqGroupingResponse(categories=final_categories)