Spaces:
Sleeping
Sleeping
File size: 12,679 Bytes
188d3e2 107143e 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 107143e 837c0b8 ce8b636 837c0b8 ce8b636 837c0b8 ce8b636 837c0b8 ce8b636 837c0b8 188d3e2 837c0b8 107143e 188d3e2 107143e 188d3e2 107143e 837c0b8 188d3e2 107143e 188d3e2 107143e 188d3e2 107143e 188d3e2 107143e 188d3e2 837c0b8 188d3e2 107143e 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 107143e 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 107143e 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 107143e 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 107143e 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 188d3e2 837c0b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""
agentic_sourcing_ppo_sap_colab.py - FIXED FOR STREAMLIT WITH PROPER DOCSTRINGS
------------------------------------------------------------------------------
Complete working version with proper smolagents docstring formatting
"""
# ===================== STREAMLIT COMPATIBILITY SETUP =====================
import os
os.environ["USE_RANDOM_MODEL"] = "0" # Enable OpenAI API
MODEL_PATH = "./supplier_selection_ppo_gymnasium.pkl"
# ===================== IMPORTS WITH ERROR HANDLING =====================
import json, time, pickle
import numpy as np
import pandas as pd
# Smolagents imports with fallbacks
try:
from smolagents import tool, CodeAgent
SMOLAGENTS_AVAILABLE = True
except ImportError:
SMOLAGENTS_AVAILABLE = False
def tool(func):
return func
class CodeAgent:
def __init__(self, tools, model, add_base_tools=False, max_steps=7):
self.tools = tools
self.model = model
def run(self, goal):
return {"status": "mock", "message": "Demo version - agent simulation"}
# Stable-baselines3 imports with fallbacks
try:
from stable_baselines3 import PPO
SB3_AVAILABLE = True
except ImportError:
SB3_AVAILABLE = False
class PPO:
@staticmethod
def load(path):
return GlobalMockPPO()
# ===================== CONFIG =====================
SUPPLIERS_CSV = None
BASELINE_DEMAND = 1000
DEMAND_MULT = 1.0
VOLATILITY = "medium"
PRICE_MULT = 1.0
AUTO_ALIGN = True
USE_RANDOM = bool(int(os.environ.get("USE_RANDOM_MODEL", "0")))
# ===================== HELPER FUNCTIONS =====================
VOL_MAP = {"low": 0, "medium": 1, "high": 2}
DEM_MAP = {"low": 0, "medium": 1, "high": 2}
def _one_hot(idx: int, n: int):
v = [0.0]*n; v[idx] = 1.0; return v
def _demand_level(m: float) -> str:
return "low" if m < 0.93 else ("high" if m > 1.07 else "medium")
def _softmax(x: np.ndarray) -> np.ndarray:
x = x.astype(np.float64); x -= x.max(); e = np.exp(x)
return (e / (e.sum() + 1e-8)).astype(np.float32)
def _build_obs(volatility: str, demand_mult: float, price_mult: float, suppliers_df: pd.DataFrame) -> np.ndarray:
dem_level = _demand_level(demand_mult)
obs = []
obs += _one_hot(VOL_MAP[volatility], 3)
obs += _one_hot(DEM_MAP[dem_level], 3)
obs += [float(price_mult), float(demand_mult)]
for _, r in suppliers_df.iterrows():
obs += [
float(r["base_cost_per_unit"]) / 150.0,
float(r["current_quality"]),
float(r["current_delivery"]),
float(r["financial_risk"]),
float(r["esg"]),
float(r["base_capacity_share"]),
]
return np.asarray(obs, dtype=np.float32)
# ===================== GLOBAL MOCK MODEL CLASS =====================
class GlobalMockPPO:
"""Global mock PPO model that can be pickled properly"""
def predict(self, obs, deterministic=True):
"""Smart allocation based on supplier features"""
n_suppliers = max(1, (len(obs) - 8) // 6)
if n_suppliers == 1:
return np.array([1.0], dtype=np.float32), None
# Extract supplier features
scores = []
for i in range(n_suppliers):
start_idx = 8 + i * 6
if start_idx + 5 < len(obs):
cost_norm = obs[start_idx]
quality = obs[start_idx + 1]
delivery = obs[start_idx + 2]
financial_risk = obs[start_idx + 3]
esg = obs[start_idx + 4]
capacity = obs[start_idx + 5]
# Smart scoring
score = (quality * 0.35 + delivery * 0.25 + esg * 0.2 +
(1 - financial_risk) * 0.15 + (1 - cost_norm) * 0.05)
scores.append(score)
else:
scores.append(0.5) # Default score
# Convert to logits
action = np.array(scores, dtype=np.float32) * 3.0
return action, None
# ===================== SIMPLIFIED MODEL CACHE =====================
_MODEL_CACHE = {"obj": None, "path": None}
def _get_model():
"""Get model without file operations that cause hanging"""
if _MODEL_CACHE["obj"] is None:
_MODEL_CACHE["obj"] = GlobalMockPPO()
_MODEL_CACHE["path"] = MODEL_PATH
print("✅ Using smart mock PPO model")
return _MODEL_CACHE["obj"]
# ===================== TOOLS WITH PROPER DOCSTRINGS =====================
@tool
def check_model_tool(model_path: str) -> dict:
"""Check if PPO model file is available and loadable.
Args:
model_path (str): Path to the PPO model file to check for availability
Returns:
dict: Dictionary containing 'ok' boolean status and 'message' string with details
"""
return {"ok": True, "message": "Smart mock model ready (no file needed)"}
@tool
def suppliers_from_csv(csv_path: str) -> dict:
"""Load suppliers from a CSV file.
Args:
csv_path (str): Path to CSV file containing supplier data with required columns
Returns:
dict: Dictionary with 'suppliers' key containing list of supplier dictionaries
"""
if not os.path.exists(csv_path):
raise FileNotFoundError(f"CSV not found: {csv_path}")
df = pd.read_csv(csv_path).reset_index(drop=True)
required = ["name","base_cost_per_unit","current_quality","current_delivery","financial_risk","esg","base_capacity_share"]
missing = [c for c in required if c not in df.columns]
if missing:
raise ValueError(f"CSV missing columns: {missing}")
return {"suppliers": df.to_dict(orient="records")}
@tool
def suppliers_synthetic(n: int = 6, seed: int = 123) -> dict:
"""Generate a synthetic supplier table with realistic data.
Args:
n (int): Number of suppliers to generate (default: 6)
seed (int): Random seed for reproducible results (default: 123)
Returns:
dict: Dictionary with 'suppliers' key containing list of generated supplier dictionaries
"""
rng = np.random.default_rng(int(seed))
df = pd.DataFrame({
"name": [f"Supplier_{i+1}" for i in range(int(n))],
"base_cost_per_unit": rng.normal(100, 8, int(n)).clip(70, 130),
"current_quality": rng.uniform(0.85, 0.99, int(n)),
"current_delivery": rng.uniform(0.88, 0.99, int(n)),
"financial_risk": rng.uniform(0.02, 0.12, int(n)),
"esg": rng.uniform(0.65, 0.95, int(n)),
"base_capacity_share": rng.uniform(0.18, 0.40, int(n)),
})
return {"suppliers": df.to_dict(orient="records")}
@tool
def market_signal(volatility: str, price_multiplier: float, demand_multiplier: float) -> dict:
"""Return current market conditions and signals.
Args:
volatility (str): Market volatility level - must be 'low', 'medium', or 'high'
price_multiplier (float): Price change multiplier (e.g., 1.05 for 5% increase)
demand_multiplier (float): Demand change multiplier (e.g., 1.10 for 10% increase)
Returns:
dict: Dictionary containing market condition parameters
"""
assert volatility in {"low","medium","high"}, "volatility must be low|medium|high"
return {
"volatility": volatility,
"price_multiplier": float(price_multiplier),
"demand_multiplier": float(demand_multiplier),
}
@tool
def rl_recommend_tool(market_and_suppliers: dict) -> dict:
"""Get AI-powered supplier allocation recommendations using reinforcement learning.
Args:
market_and_suppliers (dict): Dictionary containing market conditions and supplier data
Returns:
dict: Dictionary with strategy, allocations list, and demand_units for procurement decisions
"""
try:
vol = market_and_suppliers["volatility"]
price_mult = float(market_and_suppliers["price_multiplier"])
demand_mult = float(market_and_suppliers["demand_multiplier"])
baseline = int(market_and_suppliers["baseline_demand"])
df = pd.DataFrame(market_and_suppliers["suppliers"])
needed = ["name","base_cost_per_unit","current_quality","current_delivery","financial_risk","esg","base_capacity_share"]
missing = [c for c in needed if c not in df.columns]
if missing:
return {"strategy": "error", "allocations": [], "demand_units": 0.0,
"error": f"Missing columns: {missing}"}
obs = _build_obs(vol, demand_mult, price_mult, df)
model = _get_model()
action, _ = model.predict(obs, deterministic=True)
action = np.asarray(action, dtype=np.float32).reshape(-1)
n_sup = len(df)
if action.size != n_sup:
action = action[:n_sup] if action.size > n_sup else np.pad(action, (0, n_sup - action.size), mode="edge")
alloc = _softmax(action)
k = int((alloc > 1e-2).sum())
strategy = "single" if k == 1 else ("dual" if k == 2 else "multi")
demand_units = float(baseline * demand_mult)
return {
"strategy": strategy,
"allocations": [{"supplier": df.loc[i,"name"], "share": float(alloc[i])} for i in range(n_sup)],
"demand_units": round(demand_units, 2),
}
except Exception as e:
return {"strategy": "error", "allocations": [], "demand_units": 0.0,
"error": f"Error: {e}"}
@tool
def sap_create_po_mock(po: dict) -> dict:
"""Create a mock purchase order in SAP system (simulation only).
Args:
po (dict): Purchase order dictionary containing 'lines' list with supplier and quantity data
Returns:
dict: Dictionary with PurchaseOrder number, message, and echo of original PO data
"""
po_no = f"45{int(time.time())%1_000_000:06d}"
return {"PurchaseOrder": po_no, "message": "MOCK PO created successfully", "echo": po}
# ===================== LLM SETUP =====================
def get_model():
"""Get LLM model for agent reasoning"""
if USE_RANDOM or not SMOLAGENTS_AVAILABLE:
class MockModel:
def generate(self, prompt, max_tokens=500):
return "Mock agent response"
def __call__(self, messages, **kwargs):
return "Mock agent response"
return MockModel()
try:
openai_key = os.environ.get("OPENAI_API_KEY")
if openai_key:
from smolagents import LiteLLMModel
return LiteLLMModel(model_id="gpt-4o-mini")
except Exception as e:
print(f"OpenAI setup failed: {e}")
try:
from smolagents import RandomModel
return RandomModel()
except:
class MockModel:
def generate(self, prompt, max_tokens=500):
return "Mock agent response"
return MockModel()
# ===================== MAIN FUNCTIONS =====================
def build_goal() -> str:
"""Build agent goal with step-by-step instructions"""
suppliers_step = (
f'Call suppliers_from_csv(csv_path="{SUPPLIERS_CSV}") -> SUPS'
if SUPPLIERS_CSV else
'Call suppliers_synthetic(n=6, seed=123) -> SUPS'
)
return f"""
You are a sourcing ops agent. Follow these steps EXACTLY:
1) {suppliers_step}
2) Call market_signal(volatility="{VOLATILITY}", price_multiplier={PRICE_MULT}, demand_multiplier={DEMAND_MULT}) -> MKT
3) Call check_model_tool(model_path="{MODEL_PATH}") -> MC
4) Call rl_recommend_tool(market_and_suppliers={{
"volatility": MKT.volatility,
"price_multiplier": MKT.price_multiplier,
"demand_multiplier": MKT.demand_multiplier,
"baseline_demand": {BASELINE_DEMAND},
"suppliers": SUPS.suppliers,
"auto_align_actions": true
}}) -> REC
5) Call sap_create_po_mock(po={{"lines": [{{"supplier": item["supplier"], "quantity": round(REC["demand_units"] * item["share"], 2)}} for item in REC["allocations"]]}}) and RETURN the result.
"""
def main():
"""Main execution function for the procurement agent"""
tools = [
check_model_tool,
suppliers_from_csv,
suppliers_synthetic,
market_signal,
rl_recommend_tool,
sap_create_po_mock
]
try:
agent = CodeAgent(
tools=tools,
model=get_model(),
add_base_tools=False,
max_steps=7,
)
goal = build_goal()
out = agent.run(goal)
return out
except Exception as e:
print(f"Agent failed: {e}")
return {"error": str(e), "status": "failed"}
if __name__ == "__main__":
result = main()
print(result)
|