File size: 13,179 Bytes
55a0e9d
 
4d94e38
55a0e9d
 
4d94e38
 
55a0e9d
4d94e38
 
399f549
4d94e38
 
399f549
55a0e9d
 
4d94e38
55a0e9d
4d94e38
55a0e9d
 
 
 
 
4d94e38
55a0e9d
 
 
4d94e38
 
 
55a0e9d
 
 
4d94e38
 
 
 
 
 
 
55a0e9d
4d94e38
 
55a0e9d
 
4d94e38
 
55a0e9d
4d94e38
55a0e9d
 
 
 
 
4d94e38
 
 
 
 
 
 
 
 
 
 
55a0e9d
4d94e38
 
 
55a0e9d
4d94e38
 
 
55a0e9d
4d94e38
55a0e9d
4d94e38
55a0e9d
4d94e38
 
 
 
 
 
 
 
55a0e9d
4d94e38
 
 
 
 
 
 
55a0e9d
4d94e38
 
 
 
 
 
 
 
 
55a0e9d
4d94e38
 
 
 
55a0e9d
4d94e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a0e9d
 
 
399f549
 
 
 
4d94e38
399f549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a0e9d
4d94e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a0e9d
4d94e38
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import json
import time
from datetime import datetime

# Import from your fixed procurement agent file
from agentic_sourcing_ppo_sap_colab import (
    suppliers_synthetic, market_signal, rl_recommend_tool, 
    sap_create_po_mock, check_model_tool
)

# Page config
st.set_page_config(
    page_title="πŸ€– AI Procurement Agent Demo",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        font-weight: bold;
        color: #2E86AB;
        text-align: center;
        margin-bottom: 2rem;
    }
    .sub-header {
        font-size: 1.5rem;
        color: #F24236;
        margin-bottom: 1rem;
    }
    .metric-container {
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        padding: 1rem;
        border-radius: 10px;
        margin: 0.5rem 0;
    }
    .success-box {
        background: #d4edda;
        border: 1px solid #c3e6cb;
        padding: 1rem;
        border-radius: 5px;
        margin: 1rem 0;
    }
</style>
""", unsafe_allow_html=True)

def create_allocation_pie_chart(allocations):
    """Create pie chart for supplier allocations"""
    df = pd.DataFrame(allocations)
    df = df[df['share'] > 0.01]  # Filter out very small allocations
    
    fig = px.pie(df, values='share', names='supplier', 
                 title="Supplier Allocation Distribution",
                 color_discrete_sequence=px.colors.qualitative.Set3)
    fig.update_traces(textposition='inside', textinfo='percent+label')
    fig.update_layout(height=400)
    return fig

def create_supplier_comparison_chart(suppliers_data):
    """Create radar chart comparing suppliers"""
    df = pd.DataFrame(suppliers_data)
    
    # Select top 5 suppliers by quality score
    df['combined_score'] = df['current_quality'] * 0.4 + df['current_delivery'] * 0.3 + (1-df['financial_risk']) * 0.3
    top_suppliers = df.nlargest(5, 'combined_score')
    
    categories = ['Quality', 'Delivery', 'ESG Score', 'Low Risk', 'Cost Efficiency']
    
    fig = go.Figure()
    
    for _, supplier in top_suppliers.iterrows():
        values = [
            supplier['current_quality'],
            supplier['current_delivery'],
            supplier['esg'],
            1 - supplier['financial_risk'],  # Invert risk for better visualization
            1 - (supplier['base_cost_per_unit'] / 150)  # Normalize cost
        ]
        
        fig.add_trace(go.Scatterpolar(
            r=values,
            theta=categories,
            fill='toself',
            name=supplier['name'],
            opacity=0.7
        ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(visible=True, range=[0, 1])
        ),
        showlegend=True,
        title="Top 5 Suppliers Comparison",
        height=500
    )
    return fig

def main():
    # Header
    st.markdown('<div class="main-header">πŸ€– AI Procurement Agent Demo</div>', unsafe_allow_html=True)
    st.markdown("### Intelligent Supplier Selection using Reinforcement Learning")
    
    # Create columns for better layout
    col1, col2 = st.columns([1, 2])
    
    with col1:
        st.markdown('<div class="sub-header">πŸŽ›οΈ Control Panel</div>', unsafe_allow_html=True)
        
        # Market Parameters
        st.subheader("Market Conditions")
        volatility = st.selectbox(
            "Market Volatility",
            ["low", "medium", "high"],
            index=1,
            help="Current market volatility level"
        )
        
        demand_mult = st.slider(
            "Demand Multiplier",
            min_value=0.7,
            max_value=1.5,
            value=1.0,
            step=0.05,
            help="Demand change from baseline"
        )
        
        price_mult = st.slider(
            "Price Multiplier",
            min_value=0.8,
            max_value=1.3,
            value=1.0,
            step=0.05,
            help="Price change from baseline"
        )
        
        baseline_demand = st.number_input(
            "Baseline Demand (units)",
            min_value=100,
            max_value=10000,
            value=1000,
            step=100
        )
        
        # Supplier Configuration
        st.subheader("Supplier Configuration")
        num_suppliers = st.slider(
            "Number of Suppliers",
            min_value=3,
            max_value=10,
            value=6,
            help="Number of suppliers to consider"
        )
        
        seed = st.number_input(
            "Random Seed",
            min_value=1,
            max_value=1000,
            value=123,
            help="Seed for reproducible supplier generation"
        )
        
    with col2:
        st.markdown('<div class="sub-header">πŸ“Š Real-time Dashboard</div>', unsafe_allow_html=True)
        
        # Action button
        if st.button("πŸš€ Run Procurement Agent", type="primary", use_container_width=True):
            
            # Progress bar
            progress_bar = st.progress(0)
            status_text = st.empty()
            
            try:
                # Step 1: Generate suppliers
                status_text.text("Step 1/5: Generating supplier data...")
                progress_bar.progress(20)
                
                suppliers_result = suppliers_synthetic(n=num_suppliers, seed=seed)
                suppliers_data = suppliers_result["suppliers"]
                
                # Display suppliers table
                st.subheader("Generated Suppliers")
                df_suppliers = pd.DataFrame(suppliers_data)
                st.dataframe(df_suppliers.round(3), use_container_width=True)
                
                # Step 2: Market signals
                status_text.text("Step 2/5: Analyzing market conditions...")
                progress_bar.progress(40)
                
                market_data = market_signal(volatility, price_mult, demand_mult)
                
                # Display market metrics
                col_m1, col_m2, col_m3 = st.columns(3)
                with col_m1:
                    st.metric("Volatility", volatility.upper(), 
                             delta="High Risk" if volatility == "high" else "Normal")
                with col_m2:
                    st.metric("Demand Change", f"{demand_mult:.1%}", 
                             delta=f"{(demand_mult-1)*100:+.1f}%")
                with col_m3:
                    st.metric("Price Change", f"{price_mult:.1%}", 
                             delta=f"{(price_mult-1)*100:+.1f}%")
                
                # Step 3: Check model
                status_text.text("Step 3/5: Checking AI model availability...")
                progress_bar.progress(60)
                
                model_check = check_model_tool("./supplier_selection_ppo_gymnasium.pkl")
                
                # Step 4: Get recommendations
                status_text.text("Step 4/5: Getting AI recommendations...")
                progress_bar.progress(80)
                
                recommendation_input = {
                    "volatility": market_data["volatility"],
                    "price_multiplier": market_data["price_multiplier"],
                    "demand_multiplier": market_data["demand_multiplier"],
                    "baseline_demand": baseline_demand,
                    "suppliers": suppliers_data,
                    "auto_align_actions": True
                }
                
                recommendations = rl_recommend_tool(recommendation_input)
                
                if recommendations.get("strategy") == "error":
                    st.error(f"AI recommendation failed: {recommendations.get('error', 'Unknown error')}")
                    return
                
                # Step 5: Create PO
                status_text.text("Step 5/5: Creating purchase order...")
                progress_bar.progress(100)
                
                po_data = {
                    "lines": [
                        {
                            "supplier": alloc["supplier"],
                            "quantity": round(recommendations["demand_units"] * alloc["share"], 2)
                        }
                        for alloc in recommendations["allocations"]
                        if alloc["share"] > 0.01
                    ]
                }
                
                po_result = sap_create_po_mock(po_data)
                
                # Clear progress indicators
                status_text.text("βœ… Procurement process completed!")
                time.sleep(0.5)
                progress_bar.empty()
                status_text.empty()
                
                # Display results
                st.markdown("---")
                st.subheader("🎯 Procurement Results")
                
                # Key metrics
                col_r1, col_r2, col_r3, col_r4 = st.columns(4)
                with col_r1:
                    st.metric("Strategy", recommendations["strategy"].title())
                with col_r2:
                    active_suppliers = len([a for a in recommendations["allocations"] if a["share"] > 0.01])
                    st.metric("Active Suppliers", active_suppliers)
                with col_r3:
                    st.metric("Total Units", f"{recommendations['demand_units']:,.0f}")
                with col_r4:
                    st.metric("PO Number", po_result["PurchaseOrder"])
                
                # Visualizations
                col_v1, col_v2 = st.columns(2)
                
                with col_v1:
                    # Allocation pie chart
                    fig_pie = create_allocation_pie_chart(recommendations["allocations"])
                    st.plotly_chart(fig_pie, use_container_width=True)
                
                with col_v2:
                    # Supplier comparison radar
                    fig_radar = create_supplier_comparison_chart(suppliers_data)
                    st.plotly_chart(fig_radar, use_container_width=True)
                
                # Detailed allocation table
                st.subheader("πŸ“‹ Detailed Allocation")
                allocation_df = pd.DataFrame(recommendations["allocations"])
                allocation_df["quantity"] = allocation_df["share"] * recommendations["demand_units"]
                allocation_df["percentage"] = allocation_df["share"] * 100
                
                # Merge with supplier data for additional context
                supplier_df = pd.DataFrame(suppliers_data)
                detailed_df = allocation_df.merge(
                    supplier_df[["name", "base_cost_per_unit", "current_quality", "financial_risk"]], 
                    left_on="supplier", right_on="name"
                )
                
                st.dataframe(
                    detailed_df[["supplier", "percentage", "quantity", "base_cost_per_unit", "current_quality", "financial_risk"]]
                    .round(2), 
                    use_container_width=True
                )
                
                # Purchase Order JSON
                with st.expander("πŸ“„ View Purchase Order JSON"):
                    st.json(po_result)
                
                # Success message
                st.markdown(f"""
                <div class="success-box">
                    <strong>βœ… Success!</strong> Purchase Order {po_result["PurchaseOrder"]} has been created successfully!
                    <br><em>Note: This is a demonstration. No actual SAP system was contacted.</em>
                </div>
                """, unsafe_allow_html=True)
                
            except Exception as e:
                st.error(f"Error during execution: {str(e)}")
                st.exception(e)

    # Sidebar with information
    with st.sidebar:
        st.markdown("### About This Demo")
        st.info("""
        This demo showcases an AI-powered procurement agent that:
        
        🎯 **Analyzes** market conditions and supplier data
        
        πŸ€– **Uses** reinforcement learning (PPO) for optimal allocation
        
        πŸ“Š **Generates** purchase orders automatically
        
        πŸ”— **Integrates** with SAP systems (mocked for demo)
        """)
        
        st.markdown("### Key Features")
        st.markdown("""
        - **Real-time Analysis**: Dynamic market condition assessment
        - **Multi-criteria Optimization**: Quality, cost, delivery, ESG factors
        - **Risk Management**: Financial and supply chain risk evaluation
        - **Scalable Architecture**: Handles multiple suppliers efficiently
        """)
        
        st.markdown("### Technology Stack")
        st.markdown("""
        - **RL Framework**: Stable-Baselines3 PPO
        - **Agent Framework**: SmolagentS
        - **Backend**: Python, NumPy, Pandas
        - **Frontend**: Streamlit, Plotly
        """)

if __name__ == "__main__":
    main()