File size: 1,272 Bytes
bd8d56b
 
 
 
 
 
 
 
 
 
 
4d06747
3db891b
4d06747
 
 
 
 
 
3db891b
4d06747
 
 
 
 
 
3db891b
4d06747
 
98d76ab
4d06747
 
 
 
98d76ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
title: AI-Driven Daily Gross Margin (Revenue βˆ’ COGS)
emoji: πŸ“ˆ
colorFrom: blue
colorTo: purple
sdk: streamlit
sdk_version: "1.37.1"
app_file: app.py
pinned: false
---

# AI-Driven Daily Gross Margin (Revenue βˆ’ COGS) β€” Streamlit Demo

**What it shows**
- Synthetic SAP-like daily transactions
- Model: RandomForestRegressor predicts GM% and explains drivers with **SHAP**
- **Daily analysis**: KPIs, top drivers, segment hotspots
- **What-if simulator**: adjust discount/cost per segment using an estimated elasticity
- **Recommendations**: ranked actions with expected GM uplift

## Run locally
```bash
python -m venv .venv && source .venv/bin/activate  # on Windows: .venv\Scripts\activate
pip install -r requirements.txt
streamlit run app.py
```

## Deploy to Hugging Face Spaces
1. Create a new Space β†’ **SDK: Streamlit**.
2. Upload `app.py`, `requirements.txt`, and this `README.md`.
3. The Space will build automatically and launch the app.

## Notes
- Data is **synthetic** but embeds realistic pricing, discounting, cost, and elasticity signals.
- SHAP is computed **on demand** with a sample size control for performance.
- Recommendations are illustrative; in production, add policy bounds, portfolio constraints, and cost/promo feasibility tables.