Spaces:
Build error
Build error
File size: 29,532 Bytes
a288d8d 99c9b10 a288d8d fad5f5f 1a3874c 99c9b10 1a3874c a288d8d 99c9b10 a288d8d 99c9b10 1a3874c a288d8d 99c9b10 a288d8d 99c9b10 a288d8d 99c9b10 a288d8d 99c9b10 a288d8d 99c9b10 a288d8d 99c9b10 a288d8d 99c9b10 e448628 a288d8d e448628 a288d8d bd6f07d a288d8d bd6f07d a288d8d bd6f07d a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d bd6f07d a288d8d bd6f07d a288d8d 62633c3 a288d8d bd6f07d a288d8d e448628 a288d8d e448628 a288d8d e448628 bd6f07d a288d8d bd6f07d a288d8d bd6f07d a288d8d bd6f07d a288d8d bd6f07d a288d8d e448628 a288d8d e448628 af1c55a e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 62633c3 a288d8d bd6f07d a288d8d 62633c3 a288d8d af1c55a a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 62633c3 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 bd6f07d a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 62633c3 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d e448628 a288d8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
import os
import time
import json
import math
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
from streamlit_option_menu import option_menu
from faker import Faker
from datetime import datetime, timedelta
# =============================
# Page / Theme Configuration
# =============================
st.set_page_config(
page_title="SAP S/4HANA Agentic AI Procurement Analytics",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
)
# --- CSS ---
st.markdown(
"""
<style>
:root {
--primary-color: #0066cc;
--secondary-color: #f0f8ff;
--accent-color: #ff6b35;
--success-color: #28a745;
--warning-color: #ffc107;
--danger-color: #dc3545;
}
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
.main-header {
background: linear-gradient(90deg, #0066cc, #004c99);
padding: 1rem;
border-radius: 10px;
margin-bottom: 2rem;
color: white;
text-align: center;
}
.metric-card {
background: white;
padding: 1.25rem;
border-radius: 12px;
box-shadow: 0 2px 10px rgba(0,0,0,0.08);
border-left: 4px solid var(--primary-color);
margin-bottom: 1rem;
}
.ai-insight {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem;
border-radius: 12px;
margin: 1rem 0;
}
.alert { padding: 1rem; border-radius: 10px; margin: 0.6rem 0; border-left: 4px solid; }
.alert-success { background-color: #d4edda; border-color: var(--success-color); color: #155724; }
.alert-warning { background-color: #fff3cd; border-color: var(--warning-color); color: #856404; }
.alert-info { background-color: #d1ecf1; border-color: #17a2b8; color: #0c5460; }
.stButton > button { background: linear-gradient(90deg, #0066cc, #004c99); color: white; border: none; border-radius: 8px; padding: 0.5rem 1rem; font-weight: 600; transition: all 0.2s ease; }
.stButton > button:hover { transform: translateY(-1px); box-shadow: 0 6px 14px rgba(0,0,0,0.15); }
</style>
""",
unsafe_allow_html=True,
)
# =============================
# Config & LLM Client (robust, version-agnostic)
# =============================
@dataclass
class LLMConfig:
provider: str = os.getenv("LLM_PROVIDER", "openai").lower() # openai | azure | compatible
base_url: Optional[str] = os.getenv("OPENAI_BASE_URL") # for compatible endpoints
api_key: Optional[str] = (
os.getenv("OPENAI_API_KEY")
or os.getenv("OPENAI_API_TOKEN")
or os.getenv("OPENAI_KEY")
)
model: str = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
timeout: int = int(os.getenv("OPENAI_TIMEOUT", "45"))
max_retries: int = int(os.getenv("OPENAI_MAX_RETRIES", "5"))
temperature: float = float(os.getenv("OPENAI_TEMPERATURE", "0.6"))
def _post_json(url: str, headers: Dict[str, str], payload: Dict[str, Any], timeout: int):
import requests
return requests.post(url, headers=headers, json=payload, timeout=timeout)
class UniversalLLMClient:
"""A resilient client that works with OpenAI, Azure OpenAI, and compatible APIs.
- Prefers /chat/completions
- Falls back to /responses if available
- Retries with exponential backoff and respects Retry-After
"""
def __init__(self, cfg: LLMConfig):
self.cfg = cfg
self.available = bool(cfg.api_key)
self.last_error: Optional[str] = None
if self.available:
self._smoke_test()
def _headers(self) -> Dict[str, str]:
return {"Authorization": f"Bearer {self.cfg.api_key}", "Content-Type": "application/json"}
def _base_url(self) -> str:
if self.cfg.provider == "azure":
# Use Azure env format if provided
endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
api_version = os.getenv("AZURE_OPENAI_API_VERSION", "2024-02-15-preview")
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT", self.cfg.model)
# Azure uses deployment name in path
return f"{endpoint}/openai/deployments/{deployment}?api-version={api_version}"
return (self.cfg.base_url or "https://api.openai.com/v1").rstrip("/")
def _smoke_test(self):
try:
_ = self.chat([
{"role": "user", "content": "ping"}
], max_tokens=4)
except Exception as e:
self.available = False
self.last_error = str(e)
def chat(self, messages: List[Dict[str, str]], max_tokens: int = 400) -> str:
if not self.available:
raise RuntimeError("No API key configured")
headers = self._headers()
base = self._base_url()
# Endpoint selection
chat_url = f"{base}/chat/completions" if self.cfg.provider != "azure" else f"{base}&api-version-override=false" # azure path already includes params
responses_url = f"{base}/responses"
payload = {
"model": self.cfg.model,
"messages": messages,
"max_tokens": max_tokens,
"temperature": self.cfg.temperature,
}
# Retry with backoff
delay = 1.0
for attempt in range(self.cfg.max_retries):
try:
resp = _post_json(chat_url, headers, payload, self.cfg.timeout)
if resp.status_code == 200:
data = resp.json()
return data["choices"][0]["message"]["content"].strip()
# Try /responses fallback for some providers
if resp.status_code in (404, 400):
alt = _post_json(
responses_url,
headers,
{"model": self.cfg.model, "input": messages, "max_output_tokens": max_tokens, "temperature": self.cfg.temperature},
self.cfg.timeout,
)
if alt.status_code == 200:
return alt.json()["output"][0]["content"][0]["text"].strip()
if resp.status_code in (429, 500, 502, 503, 504):
retry_after = float(resp.headers.get("Retry-After", delay))
time.sleep(retry_after)
delay = min(delay * 2, 8.0)
continue
# Other errors → raise
try:
j = resp.json()
msg = j.get("error", {}).get("message", str(j))
except Exception:
msg = resp.text
raise RuntimeError(f"API error {resp.status_code}: {msg}")
except Exception as e:
if attempt == self.cfg.max_retries - 1:
self.last_error = str(e)
raise
time.sleep(delay)
delay = min(delay * 2, 8.0)
raise RuntimeError("Exhausted retries")
# =============================
# Data Generation & Utils
# =============================
@st.cache_data(show_spinner=False)
def generate_synthetic_procurement_data(seed: int = 42) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Generate richer synthetic SAP S/4HANA procurement data, including lead times and late flags."""
fake = Faker()
np.random.seed(seed)
random.seed(seed)
vendors = [
"Siemens AG", "BASF SE", "BMW Group", "Mercedes-Benz", "Bosch GmbH",
"ThyssenKrupp", "Bayer AG", "Continental AG", "Henkel AG", "SAP SE",
]
categories = [
"Raw Materials", "Components", "Packaging", "Services",
"IT Equipment", "Office Supplies", "Machinery", "Chemicals",
]
purchase_orders: List[Dict[str, Any]] = []
today = datetime.utcnow().date()
for i in range(900):
order_date = fake.date_between(start_date='-24m', end_date='today')
promised_days = random.randint(3, 30)
promised_date = order_date + timedelta(days=promised_days)
actual_lag = max(1, int(np.random.normal(promised_days, 5)))
delivery_date = order_date + timedelta(days=actual_lag)
late = delivery_date > promised_date
unit_price = round(random.uniform(10, 500), 2)
qty = random.randint(1, 1200)
order_value = round(unit_price * qty, 2)
po = {
'po_number': f"PO{str(i+1).zfill(6)}",
'vendor': random.choice(vendors),
'material_category': random.choice(categories),
'order_date': order_date,
'promised_date': promised_date,
'delivery_date': delivery_date,
'lead_time_days': (delivery_date - order_date).days,
'promised_days': promised_days,
'late_delivery': late,
'order_value': order_value,
'quantity': qty,
'unit_price': unit_price,
'status': random.choice(['Open', 'Delivered', 'Invoiced', 'Paid']),
'plant': random.choice(['Plant_001', 'Plant_002', 'Plant_003']),
'buyer': fake.name(),
'currency': 'EUR',
'payment_terms': random.choice(['30 Days', '45 Days', '60 Days', '90 Days']),
'quality_score': round(np.clip(np.random.normal(8.5, 0.8), 5.0, 10.0), 1),
}
purchase_orders.append(po)
spend_rows = []
for v in vendors:
for c in categories:
spend_rows.append({
'vendor': v,
'category': c,
'total_spend': round(random.uniform(10000, 700000), 2),
'contract_compliance': round(random.uniform(78, 100), 1),
'risk_score': round(random.uniform(1, 10), 1),
'savings_potential': round(random.uniform(5, 25), 1),
})
po_df = pd.DataFrame(purchase_orders)
spend_df = pd.DataFrame(spend_rows)
return po_df, spend_df
def eur(x: float) -> str:
return f"€{x:,.0f}"
# =============================
# Analytics Engine
# =============================
class ProcurementAnalytics:
def __init__(self, po_df: pd.DataFrame):
self.df = po_df.copy()
self.df['order_date'] = pd.to_datetime(self.df['order_date'])
self.df['month'] = self.df['order_date'].dt.to_period('M').dt.to_timestamp()
@st.cache_data(show_spinner=False)
def kpis(_self, df_hash: int) -> Dict[str, Any]:
df = _self.df
return {
'total_spend': float(df['order_value'].sum()),
'avg_order_value': float(df['order_value'].mean()),
'active_vendors': int(df['vendor'].nunique()),
'on_time_rate': float((~df['late_delivery']).mean()),
'quality_avg': float(df['quality_score'].mean()),
}
def category_spend(self) -> pd.DataFrame:
return (
self.df.groupby('material_category', as_index=False)['order_value'].sum()
.sort_values('order_value', ascending=False)
)
def vendor_spend(self, top_n: int = 8) -> pd.DataFrame:
g = self.df.groupby('vendor', as_index=False)['order_value'].sum()
return g.sort_values('order_value', ascending=False).head(top_n)
def monthly_spend(self) -> pd.DataFrame:
return self.df.groupby('month', as_index=False)['order_value'].sum().sort_values('month')
def vendor_performance(self) -> pd.DataFrame:
g = self.df.groupby('vendor').agg(
total_spend=('order_value', 'sum'),
on_time=('late_delivery', lambda s: 1 - s.mean()),
quality=('quality_score', 'mean'),
orders=('po_number', 'count'),
lead_time=('lead_time_days', 'mean'),
)
g['on_time'] = (g['on_time'] * 100).round(1)
g['quality'] = g['quality'].round(2)
g['lead_time'] = g['lead_time'].round(1)
g['total_spend'] = g['total_spend'].round(2)
return g.sort_values('total_spend', ascending=False)
def anomalies(self) -> pd.DataFrame:
# Simple IQR for order_value anomalies
q1, q3 = self.df['order_value'].quantile([0.25, 0.75])
iqr = q3 - q1
hi = q3 + 1.5 * iqr
lo = max(0, q1 - 1.5 * iqr)
a = self.df[(self.df['order_value'] > hi) | (self.df['order_value'] < lo)].copy()
a['anomaly_reason'] = np.where(a['order_value'] > hi, 'High value', 'Low value')
return a.sort_values('order_value', ascending=False).head(50)
def simulate_vendor_consolidation(self, keep_top: int) -> Dict[str, Any]:
g = self.df.groupby('vendor')['order_value'].sum().sort_values(ascending=False)
kept_vendors = list(g.head(keep_top).index)
kept_spend = self.df[self.df['vendor'].isin(kept_vendors)]['order_value'].sum()
total_spend = self.df['order_value'].sum()
share = kept_spend / total_spend if total_spend else 0
est_savings = 0.05 + (0.12 * (1 - share)) # heuristic: better leverage when consolidating
return {
'kept_vendors': kept_vendors,
'kept_share': share,
'estimated_savings_pct': max(0.03, min(0.18, est_savings)),
}
# =============================
# Agent (uses UniversalLLMClient with safe fallback)
# =============================
class UniversalProcurementAgent:
def __init__(self, po_df: pd.DataFrame, spend_df: pd.DataFrame, client: UniversalLLMClient):
self.po_data = po_df
self.spend_data = spend_df
self.llm = client
def llm_status(self) -> Dict[str, Any]:
return {
"api_key_available": bool(self.llm.cfg.api_key),
"llm_available": self.llm.available,
"last_error": self.llm.last_error or "Connected successfully" if self.llm.available else "Unavailable",
"provider": self.llm.cfg.provider,
"model": self.llm.cfg.model,
"base_url": self.llm.cfg.base_url or "https://api.openai.com/v1",
}
def _rule_summary(self) -> str:
total_spend = float(self.po_data['order_value'].sum())
on_time = float((~self.po_data['late_delivery']).mean()) * 100
quality = float(self.po_data['quality_score'].mean())
top_cat = self.po_data.groupby('material_category')['order_value'].sum().idxmax()
top_vendor = self.po_data.groupby('vendor')['order_value'].sum().idxmax()
return (
"🤖 **[Smart Analysis - Rule-Based Engine]**\n"
"**Executive Snapshot**\n"
f"• Total spend: {eur(total_spend)} across {len(self.po_data):,} POs\n"
f"• On-time delivery: {on_time:.1f}% • Avg quality: {quality:.1f}/10\n"
f"• Top category: {top_cat} • Lead vendor: {top_vendor}\n\n"
"**Opportunities**\n"
"• Consolidate long tail vendors to improve pricing power (5–12% potential).\n"
"• Tighten SLAs for late deliveries and extend performance-based contracts.\n"
"• Automate low-value buys to reduce cycle time."
)
def executive_summary(self) -> str:
if not self.llm.available:
return self._rule_summary()
data_summary = {
"total_spend": float(self.po_data['order_value'].sum()),
"total_orders": int(len(self.po_data)),
"vendor_count": int(self.po_data['vendor'].nunique()),
"avg_order_value": float(self.po_data['order_value'].mean()),
"on_time_delivery": float((~self.po_data['late_delivery']).mean()),
"avg_quality": float(self.po_data['quality_score'].mean()),
}
messages = [
{"role": "system", "content": "You are a senior procurement analyst with expertise in SAP S/4HANA. Be concise, metric-driven, and actionable."},
{"role": "user", "content": (
"Create an executive summary covering: 1) overview (2-3 sentences), 2) KPI highlights, 3) risks/alerts, 4) 3-4 strategic recommendations with quantified impact.\n"
f"Data: {json.dumps(data_summary)}"
)},
]
try:
return "🧠 **[AI-Powered Analysis]**\n\n" + self.llm.chat(messages, max_tokens=650)
except Exception as e:
return self._rule_summary() + f"\n\n*AI fallback due to: {e}*"
def chat_with_data(self, question: str) -> str:
if not self.llm.available:
return self._rule_answer(question)
context = {
"total_spend": float(self.po_data['order_value'].sum()),
"orders": int(len(self.po_data)),
"vendors": int(self.po_data['vendor'].nunique()),
"on_time": float((~self.po_data['late_delivery']).mean()),
"quality": float(self.po_data['quality_score'].mean()),
}
messages = [
{"role": "system", "content": "You are an expert procurement co-pilot. Use the provided context and respond with precise metrics and concrete actions."},
{"role": "user", "content": f"Question: {question}\nContext: {json.dumps(context)}"},
]
try:
return "🧠 **[AI Response]**\n\n" + self.llm.chat(messages, max_tokens=450)
except Exception as e:
return self._rule_answer(question) + f"\n\n*AI fallback due to: {e}*"
def _rule_answer(self, question: str) -> str:
q = question.lower()
if any(w in q for w in ["spend", "cost", "budget"]):
total = float(self.po_data['order_value'].sum())
monthly = total / max(1, self.po_data['order_date'].nunique()/30)
top_cat = self.po_data.groupby('material_category')['order_value'].sum().idxmax()
return (
"🤖 **[Smart Analysis] Spend**\n"
f"• Total spend: {eur(total)}\n"
f"• Monthly average (approx): {eur(monthly)}\n"
f"• Top category: {top_cat}\n"
"Tip: prioritize competitive events for the top 2 categories to unlock 4–8% savings."
)
if any(w in q for w in ["vendor", "supplier", "partner"]):
vp = self.po_data.groupby('vendor').agg(
spend=('order_value','sum'),
on_time=('late_delivery', lambda s: 1 - s.mean()),
).sort_values('spend', ascending=False).head(1)
top = vp.index[0]
on_time = float(vp.iloc[0]['on_time'])*100
return (
"🤖 **[Smart Analysis] Vendor**\n"
f"• Top vendor: {top} • On-time: {on_time:.1f}%\n"
"Action: lock in volume tiers and add delivery penalties to the contract."
)
if any(w in q for w in ["risk", "late", "delay"]):
late_rate = float(self.po_data['late_delivery'].mean())*100
return (
"🤖 **[Smart Analysis] Risk**\n"
f"• Late delivery rate: {late_rate:.1f}%\n"
"Action: add buffer to planning lead times and escalate chronic late suppliers."
)
return (
"🤖 **[Smart Analysis]** I can help with spend, vendor performance, risk, savings, and trends. Try: \"Where can I save 10%?\""
)
# =============================
# App State & Initialization
# =============================
if 'data_loaded' not in st.session_state:
with st.spinner('🔄 Generating synthetic SAP S/4HANA procurement data...'):
st.session_state.po_df, st.session_state.spend_df = generate_synthetic_procurement_data()
st.session_state.data_loaded = True
@st.cache_resource(show_spinner=False)
def get_llm_client() -> UniversalLLMClient:
return UniversalLLMClient(LLMConfig())
client = get_llm_client()
agent = UniversalProcurementAgent(st.session_state.po_df, st.session_state.spend_df, client)
analytics = ProcurementAnalytics(st.session_state.po_df)
status = agent.llm_status()
api_status = "🟢 Connected" if status['llm_available'] else "🔴 Not Connected"
# =============================
# Header
# =============================
st.markdown(
f"""
<div class="main-header">
<h1>🤖 SAP S/4HANA Agentic AI Procurement Analytics</h1>
<p>Autonomous Intelligence for Procurement Excellence</p>
<small>OpenAI: {api_status} · Data: {len(st.session_state.po_df):,} POs</small>
</div>
""",
unsafe_allow_html=True,
)
# =============================
# Sidebar
# =============================
with st.sidebar:
st.markdown("### 🤖 AI System Status")
st.markdown(f"**Connection:** {api_status}")
st.markdown(f"**Provider:** {status['provider']} ")
st.markdown(f"**Model:** {status['model']}")
with st.expander("🔍 System Information"):
safe = status.copy()
# Do not expose API key
st.json({k: v for k, v in safe.items() if k != 'api_key'})
if st.button("🔄 Test AI Connection"):
if status['llm_available']:
st.success("LLM is reachable and ready.")
else:
st.error(f"LLM unavailable: {status['last_error']}")
st.markdown("---")
selected = option_menu(
"Navigation",
["🏠 Dashboard", "💬 AI Chat", "📊 Analytics", "🧪 What‑If", "🎯 Recommendations"],
icons=['house', 'chat', 'bar-chart', 'beaker', 'target'],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#0066cc", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#0066cc"},
},
)
# =============================
# Main Views
# =============================
if selected == "🏠 Dashboard":
st.markdown("### 🧠 AI Executive Summary")
with st.spinner('🤖 Analyzing procurement data...'):
summary = agent.executive_summary()
st.markdown(f"""
<div class="ai-insight">
<h4>📊 Intelligent Analysis</h4>
<div style="white-space: pre-line; line-height: 1.55;">{summary}</div>
</div>
""", unsafe_allow_html=True)
k = analytics.kpis(hash(tuple(st.session_state.po_df['po_number'])))
c1, c2, c3, c4 = st.columns(4)
with c1:
st.markdown(f"<div class='metric-card'><h3 style='color: var(--primary-color); margin:0;'>Total Spend</h3><h2 style='margin: .5rem 0;'>{eur(k['total_spend'])}</h2><p style='color:#28a745;margin:0;'>📈 Active Portfolio</p></div>", unsafe_allow_html=True)
with c2:
st.markdown(f"<div class='metric-card'><h3 style='color: var(--primary-color); margin:0;'>Avg Order Value</h3><h2 style='margin: .5rem 0;'>{eur(k['avg_order_value'])}</h2><p style='color:#17a2b8;margin:0;'>📊 Order Efficiency</p></div>", unsafe_allow_html=True)
with c3:
st.markdown(f"<div class='metric-card'><h3 style='color: var(--primary-color); margin:0;'>Active Vendors</h3><h2 style='margin: .5rem 0;'>{k['active_vendors']}</h2><p style='color:#6f42c1;margin:0;'>🤝 Strategic Partners</p></div>", unsafe_allow_html=True)
with c4:
st.markdown(f"<div class='metric-card'><h3 style='color: var(--primary-color); margin:0;'>On‑Time Delivery</h3><h2 style='margin: .5rem 0;'>{k['on_time_rate']*100:.1f}%</h2><p style='color:#28a745;margin:0;'>⏱ Performance</p></div>", unsafe_allow_html=True)
st.markdown("### 📊 Executive Dashboard")
colA, colB = st.columns(2)
with colA:
cat = analytics.category_spend()
fig = px.pie(cat, values='order_value', names='material_category', title='Spend Distribution by Category')
fig.update_layout(title_font_size=16, title_x=0.5, height=420)
st.plotly_chart(fig, use_container_width=True)
with colB:
vend = analytics.vendor_spend(top_n=8)
fig2 = px.bar(vend, x='vendor', y='order_value', title='Top Vendors by Spend')
fig2.update_layout(title_font_size=16, title_x=0.5, xaxis_tickangle=45, height=420)
st.plotly_chart(fig2, use_container_width=True)
colC, colD = st.columns(2)
with colC:
ms = analytics.monthly_spend()
fig3 = px.line(ms, x='month', y='order_value', markers=True, title='Monthly Spend Trend')
fig3.update_layout(title_font_size=16, title_x=0.5, height=420)
st.plotly_chart(fig3, use_container_width=True)
with colD:
ano = analytics.anomalies()
st.markdown("#### 🔎 High/Low Value Anomalies (Top 50)")
st.dataframe(ano[['po_number','vendor','material_category','order_value','anomaly_reason']].reset_index(drop=True), use_container_width=True, height=380)
elif selected == "💬 AI Chat":
st.markdown("### 💬 Chat with Your Procurement Data")
st.markdown(f"""
<div class="ai-insight">
<h4>🤖 Universal AI Assistant</h4>
<p>Ask me anything about your procurement data! I'm provider-agnostic and resilient to API versions.</p>
<p><small>Status: {api_status} | Provider: {status['provider']} | Model: {status['model']}</small></p>
</div>
""", unsafe_allow_html=True)
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hello! I loaded your data and I'm ready to help—try asking about spend, vendors, or risk."}
]
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
if prompt := st.chat_input("Ask about your procurement data…"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("🤖 Analyzing…"):
reply = agent.chat_with_data(prompt)
st.markdown(reply)
st.session_state.messages.append({"role": "assistant", "content": reply})
st.markdown("#### 💡 Try quick questions:")
c1, c2, c3 = st.columns(3)
qs = ["What are my biggest spending areas?", "How are my vendors performing?", "Where can I save 10%?"]
for i, (c, q) in enumerate(zip([c1, c2, c3], qs)):
with c:
if st.button(f"💭 {q}", key=f"q_{i}"):
st.session_state.messages.append({"role": "user", "content": q})
st.session_state.messages.append({"role": "assistant", "content": agent.chat_with_data(q)})
st.rerun()
elif selected == "📊 Analytics":
st.markdown("### 📈 Advanced Analytics Dashboard")
vp = analytics.vendor_performance()
st.dataframe(vp.rename(columns={
'total_spend': 'Total Spend (€)',
'on_time': 'On-Time Delivery %',
'quality': 'Quality Score',
'orders': 'Order Count',
'lead_time': 'Avg Lead Time (days)'
}), use_container_width=True)
st.download_button(
label="⬇️ Download Vendor Performance (CSV)",
data=vp.to_csv().encode('utf-8'),
file_name="vendor_performance.csv",
mime="text/csv",
)
elif selected == "🧪 What‑If":
st.markdown("### 🧪 What‑If: Vendor Consolidation Simulator")
top_n = st.slider("Keep top N vendors by spend", min_value=2, max_value=10, value=6, step=1)
sim = analytics.simulate_vendor_consolidation(keep_top=top_n)
kept_names = ", ".join(sim['kept_vendors'])
st.markdown(
f"""
<div class='alert alert-info'>
<strong>Scenario:</strong> Keep top <b>{top_n}</b> vendors. Estimated addressable spend share: <b>{sim['kept_share']*100:.1f}%</b>.<br/>
<strong>Potential savings:</strong> <b>{sim['estimated_savings_pct']*100:.1f}%</b> (heuristic).<br/>
<small>Kept Vendors:</small> {kept_names}
</div>
""",
unsafe_allow_html=True,
)
if st.checkbox("Show detailed vendor spend"):
st.dataframe(analytics.vendor_spend(top_n=999), use_container_width=True)
elif selected == "🎯 Recommendations":
st.markdown("### 🚀 Strategic Recommendations")
recs = [
"🎯 **Vendor Consolidation**: Reduce long-tail suppliers; target 8–15% price improvement via volume tiers.",
"⚡ **Process Automation**: Auto-approve low-value POs to cut cycle time by 35–50%.",
"📊 **Performance Contracts**: KPI-linked clauses for on-time delivery; add service credits for misses.",
"🛡️ **Risk Monitoring**: Score suppliers on late rate, quality, and concentration; escalate chronic offenders.",
"🧠 **AI Copilot**: Use LLM to draft RFQs, summarize bids, and propose award scenarios.",
]
for i, rec in enumerate(recs, start=1):
st.markdown(
f"""
<div class="alert alert-success">
<h4>Recommendation #{i}</h4>
<p>{rec}</p>
</div>
""",
unsafe_allow_html=True,
)
# =============================
# Footer
# =============================
st.markdown("---")
st.markdown(
f"""
<div style="text-align:center; padding: 1rem; color:#666;">
<p>🤖 <strong>Universal AI Procurement Analytics</strong> | Provider‑agnostic LLM integration with resilient fallbacks</p>
<p><em>Demo with synthetic data • {len(st.session_state.po_df):,} orders • OpenAI {api_status}</em></p>
</div>
""",
unsafe_allow_html=True,
)
|