Spaces:
Sleeping
Sleeping
File size: 15,209 Bytes
947b3a4 a8d5e0a 947b3a4 a8d5e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import streamlit as st
import pandas as pd
import plotly.express as px
from streamlit_option_menu import option_menu
import numpy as np
from datetime import datetime, timedelta
# Import our modules
from data.synthetic_data import SAPDataGenerator
from agents.procurement_agent import ProcurementAgent
from utils.charts import ProcurementCharts
# Page configuration
st.set_page_config(
page_title="π SAP S/4HANA Procurement AI",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for beautiful UI
st.markdown("""
<style>
.main-header {
font-size: 3rem;
font-weight: bold;
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 2rem;
}
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 1rem;
border-radius: 10px;
color: white;
text-align: center;
margin: 0.5rem 0;
}
.insight-box {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
padding: 1.5rem;
border-radius: 15px;
color: white;
margin: 1rem 0;
}
.recommendation-box {
background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
padding: 1rem;
border-radius: 10px;
color: white;
margin: 0.5rem 0;
}
.sidebar .sidebar-content {
background: linear-gradient(180deg, #667eea 0%, #764ba2 100%);
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'data_loaded' not in st.session_state:
st.session_state.data_loaded = False
st.session_state.po_data = None
st.session_state.supplier_data = None
st.session_state.spend_data = None
@st.cache_data
def load_synthetic_data():
"""Load and cache synthetic data"""
generator = SAPDataGenerator()
po_data = generator.generate_purchase_orders(1000)
supplier_data = generator.generate_supplier_performance()
spend_data = generator.generate_spend_analysis()
return po_data, supplier_data, spend_data
def main():
# Main header
st.markdown('<h1 class="main-header">π SAP S/4HANA Procurement AI Assistant</h1>', unsafe_allow_html=True)
st.markdown('<p style="text-align: center; font-size: 1.2rem; color: #666;">Intelligent Procurement Analytics with AI-Powered Insights</p>', unsafe_allow_html=True)
# Load data
if not st.session_state.data_loaded:
with st.spinner("π Loading SAP S/4HANA Data..."):
po_data, supplier_data, spend_data = load_synthetic_data()
st.session_state.po_data = po_data
st.session_state.supplier_data = supplier_data
st.session_state.spend_data = spend_data
st.session_state.data_loaded = True
# Sidebar navigation
with st.sidebar:
st.image("https://via.placeholder.com/200x80/667eea/white?text=SAP+S/4HANA", width=200)
selected = option_menu(
menu_title="Navigation",
options=["π Dashboard", "π Analytics", "π€ AI Insights", "π Deep Dive", "βοΈ Settings"],
icons=["house", "graph-up", "robot", "search", "gear"],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#667eea", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#667eea"},
}
)
# Initialize AI agent
agent = ProcurementAgent()
charts = ProcurementCharts()
# Main content based on selection
if selected == "π Dashboard":
show_dashboard(st.session_state.po_data, st.session_state.supplier_data, charts)
elif selected == "π Analytics":
show_analytics(st.session_state.po_data, st.session_state.spend_data, charts)
elif selected == "π€ AI Insights":
show_ai_insights(st.session_state.po_data, st.session_state.supplier_data, agent)
elif selected == "π Deep Dive":
show_deep_dive(st.session_state.po_data, st.session_state.supplier_data)
elif selected == "βοΈ Settings":
show_settings()
def show_dashboard(po_data, supplier_data, charts):
st.subheader("π Executive Dashboard")
# KPI Metrics
col1, col2, col3, col4 = st.columns(4)
total_spend = po_data['Total_Value'].sum()
total_pos = len(po_data)
avg_delivery = po_data['Delivery_Performance'].mean()
top_supplier = po_data.groupby('Supplier')['Total_Value'].sum().idxmax()
with col1:
st.markdown(f"""
<div class="metric-card">
<h3>π° Total Spend</h3>
<h2>${total_spend:,.0f}</h2>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="metric-card">
<h3>π Purchase Orders</h3>
<h2>{total_pos:,}</h2>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class="metric-card">
<h3>π― Avg Delivery</h3>
<h2>{avg_delivery:.1f}%</h2>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class="metric-card">
<h3>π Top Supplier</h3>
<h2>{top_supplier}</h2>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
# Charts
col1, col2 = st.columns(2)
with col1:
fig_trend = charts.create_spend_trend_chart(po_data)
st.plotly_chart(fig_trend, use_container_width=True)
with col2:
fig_category = charts.create_category_pie_chart(po_data)
st.plotly_chart(fig_category, use_container_width=True)
# Status and Performance
col1, col2 = st.columns(2)
with col1:
fig_status = charts.create_status_donut_chart(po_data)
st.plotly_chart(fig_status, use_container_width=True)
with col2:
fig_supplier = charts.create_supplier_performance_chart(po_data)
st.plotly_chart(fig_supplier, use_container_width=True)
def show_analytics(po_data, spend_data, charts):
st.subheader("π Advanced Analytics")
# Filter controls
col1, col2, col3 = st.columns(3)
with col1:
selected_suppliers = st.multiselect(
"Select Suppliers:",
options=po_data['Supplier'].unique(),
default=po_data['Supplier'].unique()[:5]
)
with col2:
selected_categories = st.multiselect(
"Select Categories:",
options=po_data['Category'].unique(),
default=po_data['Category'].unique()[:5]
)
with col3:
date_range = st.date_input(
"Date Range:",
value=(po_data['PO_Date'].min(), po_data['PO_Date'].max()),
min_value=po_data['PO_Date'].min(),
max_value=po_data['PO_Date'].max()
)
# Filter data
filtered_data = po_data[
(po_data['Supplier'].isin(selected_suppliers)) &
(po_data['Category'].isin(selected_categories))
]
st.markdown("---")
# Advanced Charts
tab1, tab2, tab3 = st.tabs(["π Trends", "π’ Suppliers", "π¦ Categories"])
with tab1:
col1, col2 = st.columns(2)
with col1:
# Monthly trend
fig_trend = charts.create_spend_trend_chart(filtered_data)
st.plotly_chart(fig_trend, use_container_width=True)
with col2:
# Delivery performance over time
monthly_delivery = filtered_data.groupby(filtered_data['PO_Date'].dt.to_period('M'))['Delivery_Performance'].mean().reset_index()
monthly_delivery['PO_Date'] = monthly_delivery['PO_Date'].astype(str)
fig = px.bar(monthly_delivery, x='PO_Date', y='Delivery_Performance',
title='π Monthly Delivery Performance',
color='Delivery_Performance',
color_continuous_scale='RdYlGn')
fig.update_layout(height=400, plot_bgcolor='rgba(0,0,0,0)')
st.plotly_chart(fig, use_container_width=True)
with tab2:
# Supplier analysis
supplier_summary = filtered_data.groupby('Supplier').agg({
'Total_Value': ['sum', 'mean', 'count'],
'Delivery_Performance': 'mean'
}).round(2)
supplier_summary.columns = ['Total Spend', 'Avg PO Value', 'PO Count', 'Delivery %']
supplier_summary = supplier_summary.reset_index()
st.dataframe(
supplier_summary.style.highlight_max(axis=0),
use_container_width=True,
height=400
)
with tab3:
# Category deep dive
category_analysis = filtered_data.groupby('Category').agg({
'Total_Value': 'sum',
'Quantity': 'sum',
'Unit_Price': 'mean',
'Delivery_Performance': 'mean'
}).round(2)
st.dataframe(
category_analysis.style.highlight_max(axis=0),
use_container_width=True,
height=400
)
def show_ai_insights(po_data, supplier_data, agent):
st.subheader("π€ AI-Powered Procurement Insights")
# Generate insights
with st.spinner("π§ AI Agent is analyzing your procurement data..."):
insights = agent.generate_insights(po_data, supplier_data)
# Executive Summary
st.markdown(f"""
<div class="insight-box">
<h3>π Executive Summary</h3>
{insights['summary']}
</div>
""", unsafe_allow_html=True)
# Tabs for different insights
tab1, tab2, tab3 = st.tabs(["π° Spend Analysis", "π’ Supplier Intelligence", "β οΈ Risk Alerts"])
with tab1:
spend_insights = insights['spend_analysis']
col1, col2 = st.columns(2)
with col1:
st.metric("Total Spend", f"${spend_insights.get('total_spend', 0):,.2f}")
st.metric("Avg PO Value", f"${spend_insights.get('avg_po_value', 0):,.2f}")
with col2:
st.metric("Spending Trend", spend_insights.get('monthly_trend', 'N/A').title())
st.metric("Top Category", spend_insights.get('top_category', 'N/A'))
st.subheader("π― AI Recommendations")
for recommendation in spend_insights.get('recommendations', []):
st.markdown(f"""
<div class="recommendation-box">
{recommendation}
</div>
""", unsafe_allow_html=True)
with tab2:
supplier_insights = insights['supplier_analysis']
col1, col2 = st.columns(2)
with col1:
best = supplier_insights.get('best_performer', {})
st.success(f"π Best Performer: {best.get('name', 'N/A')} ({best.get('performance', 0):.1f}%)")
with col2:
worst = supplier_insights.get('worst_performer', {})
st.error(f"β οΈ Needs Improvement: {worst.get('name', 'N/A')} ({worst.get('performance', 0):.1f}%)")
st.subheader("π Supplier Recommendations")
for recommendation in supplier_insights.get('recommendations', []):
st.markdown(f"""
<div class="recommendation-box">
{recommendation}
</div>
""", unsafe_allow_html=True)
with tab3:
anomalies = insights['anomalies']
if anomalies:
st.subheader(f"π¨ {len(anomalies)} Critical Issues Detected")
for anomaly in anomalies:
risk_color = {"High": "π΄", "Medium": "π‘", "Low": "π’"}
st.markdown(f"""
<div class="recommendation-box">
<strong>{risk_color.get(anomaly.get('risk_level', 'Medium'), 'π‘')} {anomaly['type']}</strong><br>
PO: {anomaly.get('po_number', 'N/A')} | Supplier: {anomaly.get('supplier', 'N/A')}<br>
Risk Level: {anomaly.get('risk_level', 'Unknown')}
</div>
""", unsafe_allow_html=True)
else:
st.success("π No critical issues detected in your procurement data!")
def show_deep_dive(po_data, supplier_data):
st.subheader("π Deep Dive Analysis")
# Data explorer
st.subheader("π Purchase Orders Data Explorer")
# Search and filter
col1, col2, col3 = st.columns(3)
with col1:
search_po = st.text_input("π Search PO Number:")
with col2:
filter_status = st.selectbox("Filter by Status:", ['All'] + list(po_data['Status'].unique()))
with col3:
min_value = st.number_input("Min PO Value:", min_value=0, value=0)
# Apply filters
filtered_po = po_data.copy()
if search_po:
filtered_po = filtered_po[filtered_po['PO_Number'].str.contains(search_po, case=False)]
if filter_status != 'All':
filtered_po = filtered_po[filtered_po['Status'] == filter_status]
if min_value > 0:
filtered_po = filtered_po[filtered_po['Total_Value'] >= min_value]
# Display filtered data
st.dataframe(
filtered_po.style.highlight_max(axis=0),
use_container_width=True,
height=400
)
# Download data
csv = filtered_po.to_csv(index=False)
st.download_button(
label="π₯ Download Filtered Data",
data=csv,
file_name=f"procurement_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
def show_settings():
st.subheader("βοΈ Application Settings")
st.info("π **Demo Configuration**")
col1, col2 = st.columns(2)
with col1:
st.markdown("### π Data Settings")
data_refresh = st.button("π Refresh Synthetic Data")
if data_refresh:
st.session_state.data_loaded = False
st.rerun()
st.markdown("### π¨ Theme Settings")
theme = st.selectbox("Choose Theme:", ["Default", "Dark", "Light"])
with col2:
st.markdown("### π€ AI Settings")
ai_model = st.selectbox("AI Model:", ["GPT-4", "Claude", "Local Model"])
confidence = st.slider("Confidence Threshold:", 0.0, 1.0, 0.8)
st.markdown("### π Chart Settings")
chart_style = st.selectbox("Chart Style:", ["Modern", "Classic", "Minimal"])
st.markdown("---")
st.markdown("### π Application Info")
st.json({
"version": "1.0.0",
"framework": "Streamlit",
"data_source": "Synthetic SAP S/4HANA",
"ai_agent": "Custom Procurement Agent",
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
if __name__ == "__main__":
main()
|