Spaces:
Sleeping
Sleeping
File size: 3,934 Bytes
a5eb38c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import streamlit as st
class ProcurementCharts:
@staticmethod
def create_spend_trend_chart(df):
"""Create spending trend line chart"""
df['PO_Date'] = pd.to_datetime(df['PO_Date'])
monthly_spend = df.groupby(df['PO_Date'].dt.to_period('M'))['Total_Value'].sum().reset_index()
monthly_spend['PO_Date'] = monthly_spend['PO_Date'].astype(str)
fig = px.line(monthly_spend, x='PO_Date', y='Total_Value',
title='π Monthly Spending Trend',
labels={'Total_Value': 'Spend ($)', 'PO_Date': 'Month'})
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
title_font_size=18,
height=400
)
fig.update_traces(line_color='#00D4AA', line_width=3)
return fig
@staticmethod
def create_category_pie_chart(df):
"""Create category spending pie chart"""
category_spend = df.groupby('Category')['Total_Value'].sum().reset_index()
fig = px.pie(category_spend, values='Total_Value', names='Category',
title='π° Spend by Category',
color_discrete_sequence=px.colors.qualitative.Set3)
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
title_font_size=18,
height=400
)
return fig
@staticmethod
def create_supplier_performance_chart(df):
"""Create supplier performance scatter plot"""
supplier_metrics = df.groupby('Supplier').agg({
'Total_Value': 'sum',
'Delivery_Performance': 'mean',
'PO_Number': 'count'
}).reset_index()
fig = px.scatter(supplier_metrics, x='Total_Value', y='Delivery_Performance',
size='PO_Number', hover_name='Supplier',
title='π― Supplier Performance vs Spend',
labels={'Total_Value': 'Total Spend ($)',
'Delivery_Performance': 'Delivery Performance (%)'})
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
title_font_size=18,
height=400
)
return fig
@staticmethod
def create_kpi_cards(total_spend, total_pos, avg_delivery, top_supplier):
"""Create KPI cards using Plotly"""
kpis = [
{"title": "Total Spend", "value": f"${total_spend:,.0f}", "color": "#FF6B6B"},
{"title": "Purchase Orders", "value": f"{total_pos:,}", "color": "#4ECDC4"},
{"title": "Avg Delivery %", "value": f"{avg_delivery:.1f}%", "color": "#45B7D1"},
{"title": "Top Supplier", "value": top_supplier, "color": "#96CEB4"}
]
return kpis
@staticmethod
def create_status_donut_chart(df):
"""Create PO status donut chart"""
status_counts = df['Status'].value_counts().reset_index()
fig = go.Figure(data=[go.Pie(labels=status_counts['Status'],
values=status_counts['count'],
hole=.5)])
fig.update_layout(
title="π Purchase Order Status",
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
title_font_size=18,
height=400,
annotations=[dict(text='PO Status', x=0.5, y=0.5, font_size=16, showarrow=False)]
)
return fig
|