Spaces:
Sleeping
Sleeping
File size: 17,152 Bytes
360eca2 3ea351b 360eca2 3ea351b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from datetime import datetime, timedelta
from dateutil.parser import parse
# ---------------------------
# App Config and Theming
# ---------------------------
st.set_page_config(
page_title="Procurement Agent – S/4HANA Embedded Analytics (Demo)",
page_icon="🧭",
layout="wide",
initial_sidebar_state="expanded",
)
# Subtle CSS polish for a premium feel
st.markdown(
"""
<style>
.kpi-card {
padding: 14px 16px; border-radius: 12px; background: #0a0a0a0d;
border: 1px solid #e6e6e6; box-shadow: 0 1px 2px rgba(0,0,0,0.04);
}
.metric-label { font-size: 12px; color: #666; margin-bottom: 6px; }
.metric-value { font-size: 26px; font-weight: 700; }
.metric-sub { font-size: 12px; color: #999; }
.stChatFloatingInputContainer { border-top: 1px solid #eee; }
.st-emotion-cache-1avcm0n { padding-top: 0 !important; }
.rounded-img { border-radius: 50%; }
</style>
""",
unsafe_allow_html=True,
)
# ---------------------------
# Data Loading (Synthetic “CDS-like”)
# ---------------------------
@st.cache_data
def load_data():
df = pd.read_csv("data/synthetic_procurement.csv", parse_dates=["PO_Date","DeliveryDate","GR_Date","IR_Date"])
# Derived fields similar to embedded analytics
df["DaysToDeliver"] = (df["DeliveryDate"] - df["PO_Date"]).dt.days
df["IsOpen"] = df["Status"].eq("Open")
return df
df = load_data()
# ---------------------------
# Sidebar Filters
# ---------------------------
with st.sidebar:
st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=120)
st.title("Procurement Agent")
st.caption("S/4HANA Embedded Analytics – Learning Demo (Synthetic data)")
# Time filter
max_date = df["PO_Date"].max()
default_start = max_date - timedelta(days=45)
date_range = st.date_input("PO Date Range", (default_start, max_date))
# Codelists
company = st.multiselect("Company Code", sorted(df["CompanyCode"].unique().tolist()))
plants = st.multiselect("Plant", sorted(df["Plant"].unique().tolist()))
mat_groups = st.multiselect("Material Group", sorted(df["MaterialGroup"].unique().tolist()))
suppliers = st.multiselect("Supplier", sorted(df["Supplier"].unique().tolist()))
buyers = st.multiselect("Buyer", sorted(df["Buyer"].unique().tolist()))
status_sel = st.multiselect("Status", sorted(df["Status"].unique().tolist()))
st.markdown("---")
st.subheader("Demo actions")
if st.button("Reset Filters"):
st.session_state.clear()
st.rerun()
# Apply filters
def apply_filters(df):
dff = df.copy()
if isinstance(date_range, tuple) and len(date_range) == 2:
start_date, end_date = pd.to_datetime(date_range[0]), pd.to_datetime(date_range[1])
dff = dff[(dff["PO_Date"] >= start_date) & (dff["PO_Date"] <= end_date)]
if company:
dff = dff[dff["CompanyCode"].isin(company)]
if plants:
dff = dff[dff["Plant"].isin(plants)]
if mat_groups:
dff = dff[dff["MaterialGroup"].isin(mat_groups)]
if suppliers:
dff = dff[dff["Supplier"].isin(suppliers)]
if buyers:
dff = dff[dff["Buyer"].isin(buyers)]
if status_sel:
dff = dff[dff["Status"].isin(status_sel)]
return dff
fdf = apply_filters(df)
# ---------------------------
# KPI Header
# ---------------------------
def kpi_card(label, value, sub=""):
st.markdown(
f"""
<div class="kpi-card">
<div class="metric-label">{label}</div>
<div class="metric-value">{value}</div>
<div class="metric-sub">{sub}</div>
</div>
""",
unsafe_allow_html=True,
)
col1, col2, col3, col4 = st.columns(4)
with col1:
total_po = fdf["PO_ID"].nunique()
kpi_card("Purchase Orders", f"{total_po:,}", "Unique POs in selection")
with col2:
spend = fdf["NetValue"].sum()
kpi_card("Net Spend", f"${spend:,.0f}", "Sum of PO item values")
with col3:
avg_lt = fdf["LeadTimeDays"].mean() if len(fdf) else 0
kpi_card("Avg Lead Time", f"{avg_lt:.1f}d", "Supplier cycle time")
with col4:
otif = fdf["OTIF"].mean() * 100 if len(fdf) else 0
kpi_card("OTIF", f"{otif:.0f}%", "On-time in-full rate")
st.markdown("")
# ---------------------------
# Tabs: Overview | Supplier Insights | Explorer | Simulations
# ---------------------------
tab1, tab2, tab3, tab4 = st.tabs(["Overview", "Supplier Insights", "Explorer", "Simulations"])
with tab1:
c1, c2 = st.columns([1.3, 1])
with c1:
st.subheader("Spend by Supplier")
if len(fdf):
fig = px.bar(
fdf.groupby("Supplier", as_index=False)["NetValue"].sum().sort_values("NetValue", ascending=False),
x="Supplier", y="NetValue", color="Supplier", height=380, template="plotly_white",
hover_data={"NetValue":":,.0f"}
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No data for selected filters.")
st.subheader("Material Group Mix")
if len(fdf):
fig2 = px.pie(
fdf, names="MaterialGroup", values="NetValue", hole=0.45, template="plotly_white",
height=380
)
st.plotly_chart(fig2, use_container_width=True)
with c2:
st.subheader("Lead Time by Supplier")
if len(fdf):
g = fdf.groupby("Supplier", as_index=False)["LeadTimeDays"].mean().sort_values("LeadTimeDays")
fig3 = px.bar(g, x="LeadTimeDays", y="Supplier", orientation="h", height=380, template="plotly_white")
st.plotly_chart(fig3, use_container_width=True)
st.subheader("OTIF by Supplier")
if len(fdf):
g2 = fdf.groupby("Supplier", as_index=False)["OTIF"].mean()
g2["OTIF%"] = (g2["OTIF"] * 100).round(1)
fig4 = px.scatter(g2, x="Supplier", y="OTIF%", size="OTIF%", color="Supplier", height=340, template="plotly_white")
st.plotly_chart(fig4, use_container_width=True)
with tab2:
st.subheader("Supplier Scorecard")
sup = st.selectbox("Choose supplier", sorted(df["Supplier"].unique().tolist()))
sdf = fdf[fdf["Supplier"] == sup]
if len(sdf):
c1, c2, c3 = st.columns(3)
with c1:
kpi_card("Spend", f"${sdf['NetValue'].sum():,.0f}")
with c2:
kpi_card("Avg Price", f"${sdf['NetPrice'].mean():.2f}/unit")
with c3:
kpi_card("OTIF", f"{(sdf['OTIF'].mean()*100):.0f}%")
st.markdown("")
c4, c5 = st.columns(2)
with c4:
st.caption("Lead time trend (by PO date)")
trend = sdf.sort_values("PO_Date").groupby("PO_Date", as_index=False)["LeadTimeDays"].mean()
fig5 = px.line(trend, x="PO_Date", y="LeadTimeDays", markers=True, template="plotly_white", height=340)
st.plotly_chart(fig5, use_container_width=True)
with c5:
st.caption("Price distribution")
fig6 = px.histogram(sdf, x="NetPrice", nbins=10, template="plotly_white", height=340)
st.plotly_chart(fig6, use_container_width=True)
st.subheader("Recent PO Lines")
st.dataframe(
sdf.sort_values("PO_Date", ascending=False)[
["PO_ID","PO_Item","PO_Date","Material","Quantity","OrderUnit","NetPrice","NetValue","DeliveryDate","Status","LeadTimeDays","OTIF"]
].head(10),
use_container_width=True, height=300
)
else:
st.info("No lines for selected supplier within current filters.")
with tab3:
st.subheader("Interactive Explorer")
dims = ["CompanyCode","Plant","MaterialGroup","Supplier","Buyer","Status"]
sel_dim = st.selectbox("Dimension", dims, index=3)
sel_mea = st.selectbox("Measure", ["NetValue","Quantity","NetPrice","LeadTimeDays","OTIF"], index=0)
if len(fdf):
g = fdf.groupby(sel_dim, as_index=False)[sel_mea].mean() if sel_mea in ["NetPrice","LeadTimeDays","OTIF"] else \
fdf.groupby(sel_dim, as_index=False)[sel_mea].sum()
fig7 = px.bar(g.sort_values(sel_mea, ascending=False).head(15), x=sel_dim, y=sel_mea, color=sel_dim, template="plotly_white", height=420)
st.plotly_chart(fig7, use_container_width=True)
st.dataframe(g.sort_values(sel_mea, ascending=False), use_container_width=True, height=260)
else:
st.info("Adjust filters to see data.")
with tab4:
st.subheader("What-if: Payment Terms and Delivery Delays")
# Simple simulation: change payment terms and hypothetical delay impact on OTIF
term_delta = st.slider("Payment term change (days)", -30, 30, 0, step=5)
delay_rate = st.slider("Simulate delivery delay rate (%)", 0, 50, 10, step=5)
def run_sim(df_in, term_delta, delay_rate):
sim = df_in.copy()
# Adjust payment days
sim["PaymentDaysSim"] = sim["PaymentDays"] + term_delta
# Apply simple OTIF penalty based on delay rate
penalty = delay_rate / 100.0
sim["OTIF_Sim"] = np.clip(sim["OTIF"] * (1 - penalty) + (1 - sim["OTIF"]) * (1 - penalty/2), 0, 1)
# Assume carrying cost impact: +0.02% per extra payment day on spend
delta_days = np.maximum(sim["PaymentDaysSim"] - sim["PaymentDays"], 0)
sim["CarryingCostAdj"] = sim["NetValue"] * (0.0002 * delta_days)
return sim
if len(fdf):
simdf = run_sim(fdf, term_delta, delay_rate)
c1, c2, c3 = st.columns(3)
with c1:
kpi_card("OTIF (Simulated)", f"{(simdf['OTIF_Sim'].mean()*100):.0f}%")
with c2:
kpi_card("PaymentDays Δ", f"{term_delta:+d}d")
with c3:
kpi_card("Carrying Cost Adj", f"${simdf['CarryingCostAdj'].sum():,.0f}")
st.caption("Supplier-level OTIF change")
g = simdf.groupby("Supplier", as_index=False)[["OTIF","OTIF_Sim"]].mean()
g["OTIF"] = (g["OTIF"]*100).round(1)
g["OTIF_Sim"] = (g["OTIF_Sim"]*100).round(1)
fig8 = px.bar(g.melt(id_vars="Supplier", value_vars=["OTIF","OTIF_Sim"], var_name="Metric", value_name="OTIF%"), x="Supplier", y="OTIF%", color="Metric", barmode="group", template="plotly_white", height=400)
st.plotly_chart(fig8, use_container_width=True)
st.dataframe(g.sort_values("OTIF_Sim", ascending=False), use_container_width=True, height=260)
else:
st.info("No data to simulate. Adjust filters.")
# ---------------------------
# Agentic Chat (Demo)
# ---------------------------
st.markdown("---")
st.subheader("Agent Assistant")
st.caption("Ask procurement questions, e.g., “Top suppliers by OTIF this month,” “Compare ACME vs GLOBAL_MFG on price and lead time,” “Show spend by RM group last 30 days.”")
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hello! I can analyze procurement data, compute KPIs, and run what‑if simulations. What would you like to see?"}
]
# Simple tool functions (CDS-like queries)
def tool_top_suppliers_by(metric="OTIF", topn=5):
if not len(fdf): return "No data in current selection."
g = fdf.groupby("Supplier", as_index=False)[metric].mean()
if metric != "OTIF":
# For value metrics that make sense as sum (e.g., NetValue)
if metric in ["NetValue","Quantity"]:
g = fdf.groupby("Supplier", as_index=False)[metric].sum()
g = g.sort_values(metric, ascending=False).head(topn)
return g
def tool_compare_suppliers(sup_a, sup_b):
sub = fdf[fdf["Supplier"].isin([sup_a, sup_b])]
if not len(sub): return "No data for those suppliers in current selection."
stats = sub.groupby("Supplier").agg(
Spend=("NetValue","sum"),
AvgPrice=("NetPrice","mean"),
AvgLead=("LeadTimeDays","mean"),
OTIF=("OTIF","mean")
).reset_index()
stats["OTIF%"] = (stats["OTIF"]*100).round(1)
return stats
def tool_spend_by_dim(dim="MaterialGroup"):
if not len(fdf): return None
g = fdf.groupby(dim, as_index=False)["NetValue"].sum().sort_values("NetValue", ascending=False)
return g
def tool_show_recent_po_lines(n=10):
if not len(fdf): return None
cols = ["PO_ID","PO_Item","PO_Date","Supplier","Material","Quantity","OrderUnit","NetPrice","NetValue","DeliveryDate","Status","LeadTimeDays","OTIF"]
return fdf.sort_values("PO_Date", ascending=False)[cols].head(n)
# Heuristic “planner” to route user intents to tools
def agent_router(prompt: str):
p = prompt.lower().strip()
# pattern routes
if "top" in p and "supplier" in p and "otif" in p:
n = 5
for tok in p.split():
if tok.isdigit():
n = int(tok)
break
return ("top_suppliers_otif", {"topn": n})
if "compare" in p and "supplier" in p:
# naive extract A vs B
tokens = p.replace("compare","").replace("supplier","").replace("suppliers","").replace(" vs "," ").split()
# heuristic: choose two known supplier names intersected
known = set(df["Supplier"].unique().tolist())
picks = [t for t in tokens if t.upper() in known]
if len(picks) >= 2:
return ("compare_suppliers", {"a": picks[0].upper(), "b": picks[1].upper()})
return ("compare_suppliers", {"a": "ACME_SUPPLY", "b": "GLOBAL_MFG"})
if "spend" in p and ("material group" in p or "group" in p):
return ("spend_by_dim", {"dim": "MaterialGroup"})
if "recent" in p or ("last" in p and "po" in p):
return ("recent_pos", {"n": 10})
if "lead time" in p and "supplier" in p:
return ("lead_by_supplier", {})
if "price" in p and "supplier" in p:
return ("price_by_supplier", {})
# default: summary
return ("summary", {})
def agent_execute(route, args):
if route == "top_suppliers_otif":
g = tool_top_suppliers_by("OTIF", topn=args.get("topn",5))
if isinstance(g, str):
return g, None
g2 = g.copy()
g2["OTIF%"] = (g2["OTIF"]*100).round(1)
fig = px.bar(g2, x="Supplier", y="OTIF%", color="Supplier", template="plotly_white", height=360)
return "Top suppliers by OTIF:", fig
if route == "compare_suppliers":
stats = tool_compare_suppliers(args.get("a"), args.get("b"))
if isinstance(stats, str):
return stats, None
fig = px.bar(stats, x="Supplier", y=["Spend","AvgPrice","AvgLead","OTIF"], barmode="group", template="plotly_white", height=420)
return "Comparison across Spend, AvgPrice, AvgLead, and OTIF:", fig
if route == "spend_by_dim":
g = tool_spend_by_dim(args.get("dim","MaterialGroup"))
if g is None:
return "No data for spend by dimension.", None
fig = px.treemap(g, path=[args.get("dim","MaterialGroup")], values="NetValue", height=420)
return f"Spend by {args.get('dim','MaterialGroup')}:", fig
if route == "recent_pos":
lines = tool_show_recent_po_lines(args.get("n",10))
if lines is None:
return "No recent PO lines found.", None
st.dataframe(lines, use_container_width=True, height=260)
return f"Showing {len(lines)} most recent PO lines.", None
if route == "lead_by_supplier":
if not len(fdf): return "No data.", None
g = fdf.groupby("Supplier", as_index=False)["LeadTimeDays"].mean()
fig = px.bar(g.sort_values("LeadTimeDays"), x="LeadTimeDays", y="Supplier", orientation="h", template="plotly_white", height=420)
return "Average lead time by supplier:", fig
if route == "price_by_supplier":
if not len(fdf): return "No data.", None
g = fdf.groupby("Supplier", as_index=False)["NetPrice"].mean()
fig = px.bar(g.sort_values("NetPrice", ascending=False), x="Supplier", y="NetPrice", template="plotly_white", height=420)
return "Average price by supplier:", fig
# summary
msg = f"In current selection: {fdf['PO_ID'].nunique()} POs, spend ${fdf['NetValue'].sum():,.0f}, avg lead time {fdf['LeadTimeDays'].mean():.1f}d, OTIF {(fdf['OTIF'].mean()*100):.0f}%."
return msg, None
# Render chat history
for m in st.session_state.messages:
with st.chat_message(m["role"], avatar="🧭" if m["role"]=="assistant" else "🧑🏻"):
st.write(m["content"])
prompt = st.chat_input("Ask about procurement performance, suppliers, KPIs, or simulations…")
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar="🧑🏻"):
st.write(prompt)
with st.chat_message("assistant", avatar="🧭"):
with st.status("Thinking…", expanded=False):
route, args = agent_router(prompt)
text, fig = agent_execute(route, args)
if text:
st.write(text)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.session_state.messages.append({"role": "assistant", "content": text or "(shown as chart/table)"})
|