import streamlit as st import pandas as pd import numpy as np import plotly.express as px from datetime import datetime, timedelta from dateutil.parser import parse # --------------------------- # App Config and Theming # --------------------------- st.set_page_config( page_title="Procurement Agent – S/4HANA Embedded Analytics (Demo)", page_icon="🧭", layout="wide", initial_sidebar_state="expanded", ) # Subtle CSS polish for a premium feel st.markdown( """ """, unsafe_allow_html=True, ) # --------------------------- # Data Loading (Synthetic “CDS-like”) # --------------------------- @st.cache_data def load_data(): df = pd.read_csv("data/synthetic_procurement.csv", parse_dates=["PO_Date","DeliveryDate","GR_Date","IR_Date"]) # Derived fields similar to embedded analytics df["DaysToDeliver"] = (df["DeliveryDate"] - df["PO_Date"]).dt.days df["IsOpen"] = df["Status"].eq("Open") return df df = load_data() # --------------------------- # Sidebar Filters # --------------------------- with st.sidebar: st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=120) st.title("Procurement Agent") st.caption("S/4HANA Embedded Analytics – Learning Demo (Synthetic data)") # Time filter max_date = df["PO_Date"].max() default_start = max_date - timedelta(days=45) date_range = st.date_input("PO Date Range", (default_start, max_date)) # Codelists company = st.multiselect("Company Code", sorted(df["CompanyCode"].unique().tolist())) plants = st.multiselect("Plant", sorted(df["Plant"].unique().tolist())) mat_groups = st.multiselect("Material Group", sorted(df["MaterialGroup"].unique().tolist())) suppliers = st.multiselect("Supplier", sorted(df["Supplier"].unique().tolist())) buyers = st.multiselect("Buyer", sorted(df["Buyer"].unique().tolist())) status_sel = st.multiselect("Status", sorted(df["Status"].unique().tolist())) st.markdown("---") st.subheader("Demo actions") if st.button("Reset Filters"): st.session_state.clear() st.rerun() # Apply filters def apply_filters(df): dff = df.copy() if isinstance(date_range, tuple) and len(date_range) == 2: start_date, end_date = pd.to_datetime(date_range[0]), pd.to_datetime(date_range[1]) dff = dff[(dff["PO_Date"] >= start_date) & (dff["PO_Date"] <= end_date)] if company: dff = dff[dff["CompanyCode"].isin(company)] if plants: dff = dff[dff["Plant"].isin(plants)] if mat_groups: dff = dff[dff["MaterialGroup"].isin(mat_groups)] if suppliers: dff = dff[dff["Supplier"].isin(suppliers)] if buyers: dff = dff[dff["Buyer"].isin(buyers)] if status_sel: dff = dff[dff["Status"].isin(status_sel)] return dff fdf = apply_filters(df) # --------------------------- # KPI Header # --------------------------- def kpi_card(label, value, sub=""): st.markdown( f"""
{label}
{value}
{sub}
""", unsafe_allow_html=True, ) col1, col2, col3, col4 = st.columns(4) with col1: total_po = fdf["PO_ID"].nunique() kpi_card("Purchase Orders", f"{total_po:,}", "Unique POs in selection") with col2: spend = fdf["NetValue"].sum() kpi_card("Net Spend", f"${spend:,.0f}", "Sum of PO item values") with col3: avg_lt = fdf["LeadTimeDays"].mean() if len(fdf) else 0 kpi_card("Avg Lead Time", f"{avg_lt:.1f}d", "Supplier cycle time") with col4: otif = fdf["OTIF"].mean() * 100 if len(fdf) else 0 kpi_card("OTIF", f"{otif:.0f}%", "On-time in-full rate") st.markdown("") # --------------------------- # Tabs: Overview | Supplier Insights | Explorer | Simulations # --------------------------- tab1, tab2, tab3, tab4 = st.tabs(["Overview", "Supplier Insights", "Explorer", "Simulations"]) with tab1: c1, c2 = st.columns([1.3, 1]) with c1: st.subheader("Spend by Supplier") if len(fdf): fig = px.bar( fdf.groupby("Supplier", as_index=False)["NetValue"].sum().sort_values("NetValue", ascending=False), x="Supplier", y="NetValue", color="Supplier", height=380, template="plotly_white", hover_data={"NetValue":":,.0f"} ) st.plotly_chart(fig, use_container_width=True) else: st.info("No data for selected filters.") st.subheader("Material Group Mix") if len(fdf): fig2 = px.pie( fdf, names="MaterialGroup", values="NetValue", hole=0.45, template="plotly_white", height=380 ) st.plotly_chart(fig2, use_container_width=True) with c2: st.subheader("Lead Time by Supplier") if len(fdf): g = fdf.groupby("Supplier", as_index=False)["LeadTimeDays"].mean().sort_values("LeadTimeDays") fig3 = px.bar(g, x="LeadTimeDays", y="Supplier", orientation="h", height=380, template="plotly_white") st.plotly_chart(fig3, use_container_width=True) st.subheader("OTIF by Supplier") if len(fdf): g2 = fdf.groupby("Supplier", as_index=False)["OTIF"].mean() g2["OTIF%"] = (g2["OTIF"] * 100).round(1) fig4 = px.scatter(g2, x="Supplier", y="OTIF%", size="OTIF%", color="Supplier", height=340, template="plotly_white") st.plotly_chart(fig4, use_container_width=True) with tab2: st.subheader("Supplier Scorecard") sup = st.selectbox("Choose supplier", sorted(df["Supplier"].unique().tolist())) sdf = fdf[fdf["Supplier"] == sup] if len(sdf): c1, c2, c3 = st.columns(3) with c1: kpi_card("Spend", f"${sdf['NetValue'].sum():,.0f}") with c2: kpi_card("Avg Price", f"${sdf['NetPrice'].mean():.2f}/unit") with c3: kpi_card("OTIF", f"{(sdf['OTIF'].mean()*100):.0f}%") st.markdown("") c4, c5 = st.columns(2) with c4: st.caption("Lead time trend (by PO date)") trend = sdf.sort_values("PO_Date").groupby("PO_Date", as_index=False)["LeadTimeDays"].mean() fig5 = px.line(trend, x="PO_Date", y="LeadTimeDays", markers=True, template="plotly_white", height=340) st.plotly_chart(fig5, use_container_width=True) with c5: st.caption("Price distribution") fig6 = px.histogram(sdf, x="NetPrice", nbins=10, template="plotly_white", height=340) st.plotly_chart(fig6, use_container_width=True) st.subheader("Recent PO Lines") st.dataframe( sdf.sort_values("PO_Date", ascending=False)[ ["PO_ID","PO_Item","PO_Date","Material","Quantity","OrderUnit","NetPrice","NetValue","DeliveryDate","Status","LeadTimeDays","OTIF"] ].head(10), use_container_width=True, height=300 ) else: st.info("No lines for selected supplier within current filters.") with tab3: st.subheader("Interactive Explorer") dims = ["CompanyCode","Plant","MaterialGroup","Supplier","Buyer","Status"] sel_dim = st.selectbox("Dimension", dims, index=3) sel_mea = st.selectbox("Measure", ["NetValue","Quantity","NetPrice","LeadTimeDays","OTIF"], index=0) if len(fdf): g = fdf.groupby(sel_dim, as_index=False)[sel_mea].mean() if sel_mea in ["NetPrice","LeadTimeDays","OTIF"] else \ fdf.groupby(sel_dim, as_index=False)[sel_mea].sum() fig7 = px.bar(g.sort_values(sel_mea, ascending=False).head(15), x=sel_dim, y=sel_mea, color=sel_dim, template="plotly_white", height=420) st.plotly_chart(fig7, use_container_width=True) st.dataframe(g.sort_values(sel_mea, ascending=False), use_container_width=True, height=260) else: st.info("Adjust filters to see data.") with tab4: st.subheader("What-if: Payment Terms and Delivery Delays") # Simple simulation: change payment terms and hypothetical delay impact on OTIF term_delta = st.slider("Payment term change (days)", -30, 30, 0, step=5) delay_rate = st.slider("Simulate delivery delay rate (%)", 0, 50, 10, step=5) def run_sim(df_in, term_delta, delay_rate): sim = df_in.copy() # Adjust payment days sim["PaymentDaysSim"] = sim["PaymentDays"] + term_delta # Apply simple OTIF penalty based on delay rate penalty = delay_rate / 100.0 sim["OTIF_Sim"] = np.clip(sim["OTIF"] * (1 - penalty) + (1 - sim["OTIF"]) * (1 - penalty/2), 0, 1) # Assume carrying cost impact: +0.02% per extra payment day on spend delta_days = np.maximum(sim["PaymentDaysSim"] - sim["PaymentDays"], 0) sim["CarryingCostAdj"] = sim["NetValue"] * (0.0002 * delta_days) return sim if len(fdf): simdf = run_sim(fdf, term_delta, delay_rate) c1, c2, c3 = st.columns(3) with c1: kpi_card("OTIF (Simulated)", f"{(simdf['OTIF_Sim'].mean()*100):.0f}%") with c2: kpi_card("PaymentDays Δ", f"{term_delta:+d}d") with c3: kpi_card("Carrying Cost Adj", f"${simdf['CarryingCostAdj'].sum():,.0f}") st.caption("Supplier-level OTIF change") g = simdf.groupby("Supplier", as_index=False)[["OTIF","OTIF_Sim"]].mean() g["OTIF"] = (g["OTIF"]*100).round(1) g["OTIF_Sim"] = (g["OTIF_Sim"]*100).round(1) fig8 = px.bar(g.melt(id_vars="Supplier", value_vars=["OTIF","OTIF_Sim"], var_name="Metric", value_name="OTIF%"), x="Supplier", y="OTIF%", color="Metric", barmode="group", template="plotly_white", height=400) st.plotly_chart(fig8, use_container_width=True) st.dataframe(g.sort_values("OTIF_Sim", ascending=False), use_container_width=True, height=260) else: st.info("No data to simulate. Adjust filters.") # --------------------------- # Agentic Chat (Demo) # --------------------------- st.markdown("---") st.subheader("Agent Assistant") st.caption("Ask procurement questions, e.g., “Top suppliers by OTIF this month,” “Compare ACME vs GLOBAL_MFG on price and lead time,” “Show spend by RM group last 30 days.”") if "messages" not in st.session_state: st.session_state.messages = [ {"role": "assistant", "content": "Hello! I can analyze procurement data, compute KPIs, and run what‑if simulations. What would you like to see?"} ] # Simple tool functions (CDS-like queries) def tool_top_suppliers_by(metric="OTIF", topn=5): if not len(fdf): return "No data in current selection." g = fdf.groupby("Supplier", as_index=False)[metric].mean() if metric != "OTIF": # For value metrics that make sense as sum (e.g., NetValue) if metric in ["NetValue","Quantity"]: g = fdf.groupby("Supplier", as_index=False)[metric].sum() g = g.sort_values(metric, ascending=False).head(topn) return g def tool_compare_suppliers(sup_a, sup_b): sub = fdf[fdf["Supplier"].isin([sup_a, sup_b])] if not len(sub): return "No data for those suppliers in current selection." stats = sub.groupby("Supplier").agg( Spend=("NetValue","sum"), AvgPrice=("NetPrice","mean"), AvgLead=("LeadTimeDays","mean"), OTIF=("OTIF","mean") ).reset_index() stats["OTIF%"] = (stats["OTIF"]*100).round(1) return stats def tool_spend_by_dim(dim="MaterialGroup"): if not len(fdf): return None g = fdf.groupby(dim, as_index=False)["NetValue"].sum().sort_values("NetValue", ascending=False) return g def tool_show_recent_po_lines(n=10): if not len(fdf): return None cols = ["PO_ID","PO_Item","PO_Date","Supplier","Material","Quantity","OrderUnit","NetPrice","NetValue","DeliveryDate","Status","LeadTimeDays","OTIF"] return fdf.sort_values("PO_Date", ascending=False)[cols].head(n) # Heuristic “planner” to route user intents to tools def agent_router(prompt: str): p = prompt.lower().strip() # pattern routes if "top" in p and "supplier" in p and "otif" in p: n = 5 for tok in p.split(): if tok.isdigit(): n = int(tok) break return ("top_suppliers_otif", {"topn": n}) if "compare" in p and "supplier" in p: # naive extract A vs B tokens = p.replace("compare","").replace("supplier","").replace("suppliers","").replace(" vs "," ").split() # heuristic: choose two known supplier names intersected known = set(df["Supplier"].unique().tolist()) picks = [t for t in tokens if t.upper() in known] if len(picks) >= 2: return ("compare_suppliers", {"a": picks[0].upper(), "b": picks[1].upper()}) return ("compare_suppliers", {"a": "ACME_SUPPLY", "b": "GLOBAL_MFG"}) if "spend" in p and ("material group" in p or "group" in p): return ("spend_by_dim", {"dim": "MaterialGroup"}) if "recent" in p or ("last" in p and "po" in p): return ("recent_pos", {"n": 10}) if "lead time" in p and "supplier" in p: return ("lead_by_supplier", {}) if "price" in p and "supplier" in p: return ("price_by_supplier", {}) # default: summary return ("summary", {}) def agent_execute(route, args): if route == "top_suppliers_otif": g = tool_top_suppliers_by("OTIF", topn=args.get("topn",5)) if isinstance(g, str): return g, None g2 = g.copy() g2["OTIF%"] = (g2["OTIF"]*100).round(1) fig = px.bar(g2, x="Supplier", y="OTIF%", color="Supplier", template="plotly_white", height=360) return "Top suppliers by OTIF:", fig if route == "compare_suppliers": stats = tool_compare_suppliers(args.get("a"), args.get("b")) if isinstance(stats, str): return stats, None fig = px.bar(stats, x="Supplier", y=["Spend","AvgPrice","AvgLead","OTIF"], barmode="group", template="plotly_white", height=420) return "Comparison across Spend, AvgPrice, AvgLead, and OTIF:", fig if route == "spend_by_dim": g = tool_spend_by_dim(args.get("dim","MaterialGroup")) if g is None: return "No data for spend by dimension.", None fig = px.treemap(g, path=[args.get("dim","MaterialGroup")], values="NetValue", height=420) return f"Spend by {args.get('dim','MaterialGroup')}:", fig if route == "recent_pos": lines = tool_show_recent_po_lines(args.get("n",10)) if lines is None: return "No recent PO lines found.", None st.dataframe(lines, use_container_width=True, height=260) return f"Showing {len(lines)} most recent PO lines.", None if route == "lead_by_supplier": if not len(fdf): return "No data.", None g = fdf.groupby("Supplier", as_index=False)["LeadTimeDays"].mean() fig = px.bar(g.sort_values("LeadTimeDays"), x="LeadTimeDays", y="Supplier", orientation="h", template="plotly_white", height=420) return "Average lead time by supplier:", fig if route == "price_by_supplier": if not len(fdf): return "No data.", None g = fdf.groupby("Supplier", as_index=False)["NetPrice"].mean() fig = px.bar(g.sort_values("NetPrice", ascending=False), x="Supplier", y="NetPrice", template="plotly_white", height=420) return "Average price by supplier:", fig # summary msg = f"In current selection: {fdf['PO_ID'].nunique()} POs, spend ${fdf['NetValue'].sum():,.0f}, avg lead time {fdf['LeadTimeDays'].mean():.1f}d, OTIF {(fdf['OTIF'].mean()*100):.0f}%." return msg, None # Render chat history for m in st.session_state.messages: with st.chat_message(m["role"], avatar="🧭" if m["role"]=="assistant" else "🧑🏻"): st.write(m["content"]) prompt = st.chat_input("Ask about procurement performance, suppliers, KPIs, or simulations…") if prompt: st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user", avatar="🧑🏻"): st.write(prompt) with st.chat_message("assistant", avatar="🧭"): with st.status("Thinking…", expanded=False): route, args = agent_router(prompt) text, fig = agent_execute(route, args) if text: st.write(text) if fig is not None: st.plotly_chart(fig, use_container_width=True) st.session_state.messages.append({"role": "assistant", "content": text or "(shown as chart/table)"})