File size: 18,106 Bytes
c829fa9
 
4897a44
c829fa9
 
 
 
 
 
 
 
 
 
 
 
 
 
4897a44
c829fa9
 
 
 
9794e0d
 
 
4897a44
c829fa9
 
 
 
 
 
 
4897a44
c829fa9
a3796f2
c829fa9
45d4821
a3796f2
4897a44
45d4821
 
a3796f2
4897a44
 
 
 
 
 
 
 
 
45d4821
a3796f2
45d4821
 
a3796f2
45d4821
4897a44
 
a3796f2
 
4897a44
45d4821
 
 
 
 
4897a44
45d4821
 
 
 
4897a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3796f2
 
4897a44
 
 
 
 
 
 
 
 
45d4821
 
4897a44
 
 
 
a3796f2
4897a44
 
a3796f2
4897a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d4821
4897a44
 
 
 
 
 
 
 
a3796f2
 
c829fa9
 
45d4821
c829fa9
 
 
 
 
 
 
45d4821
 
c829fa9
 
 
 
a3796f2
c829fa9
 
 
 
a3796f2
c829fa9
 
 
 
a3796f2
c829fa9
 
 
 
 
 
 
 
 
 
a3796f2
45d4821
c829fa9
 
4897a44
a3796f2
4897a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3796f2
 
4897a44
 
 
 
 
a3796f2
4897a44
 
 
 
 
a3796f2
4897a44
 
45d4821
4897a44
 
 
 
45d4821
4897a44
 
a3796f2
4897a44
 
 
 
 
a3796f2
4897a44
 
a3796f2
45d4821
 
 
 
 
 
4897a44
 
 
a3796f2
 
 
 
4897a44
a3796f2
 
4897a44
45d4821
4897a44
45d4821
 
4897a44
 
 
 
 
a3796f2
4897a44
 
 
 
 
45d4821
4897a44
 
 
 
 
 
a3796f2
45d4821
a3796f2
 
 
4897a44
45d4821
c829fa9
 
4897a44
a3796f2
4897a44
 
 
 
 
 
 
 
 
 
45d4821
 
a3796f2
4897a44
45d4821
 
a3796f2
4897a44
45d4821
4897a44
45d4821
 
4897a44
 
 
 
a3796f2
 
 
4897a44
 
a3796f2
 
4897a44
a3796f2
4897a44
 
 
 
a3796f2
 
4897a44
a3796f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4897a44
 
a3796f2
 
4897a44
 
a3796f2
 
 
 
45d4821
c829fa9
 
 
45d4821
 
 
 
 
 
4897a44
45d4821
 
 
 
 
 
 
 
 
 
 
 
4897a44
 
45d4821
 
 
 
c829fa9
 
 
 
 
 
a3796f2
c829fa9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Embedded Model Training for HF Spaces
Fixed version with dynamic column mapping for SAP SALT dataset
"""

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import joblib
import json
import streamlit as st
from pathlib import Path
from datetime import datetime

class EmbeddedChurnTrainer:
    """Embedded trainer with dynamic column mapping for real SAP SALT data"""
    
    def __init__(self):
        self.model_path = Path('models/churn_model_v1.pkl')
        self.metadata_path = Path('models/model_metadata.json')
        self.model = None
        self.label_encoders = {}
        self.feature_columns = []
        self.column_mapping = {}
        
    def model_exists(self):
        """Check if trained model exists"""
        return self.model_path.exists() and self.metadata_path.exists()
    
    @st.cache_data
    def load_sap_data(_self):
        """Load real SAP SALT dataset and inspect its structure"""
        try:
            from datasets import load_dataset
            
            st.info("πŸ”„ Loading SAP SALT dataset from Hugging Face...")
            
            # Load the dataset
            dataset = load_dataset("SAP/SALT", split="train")
            data_df = dataset.to_pandas()
            
            # Debug: Show actual columns
            st.info(f"πŸ“‹ Dataset columns: {list(data_df.columns)}")
            st.info(f"πŸ“Š Dataset shape: {data_df.shape}")
            
            # Create column mapping based on available columns
            _self.column_mapping = _self._create_column_mapping(data_df.columns)
            st.info(f"πŸ”— Column mapping: {_self.column_mapping}")
            
            # Add aggregated fields
            data_df = _self._add_aggregated_fields(data_df)
            
            st.success(f"βœ… Loaded {len(data_df)} records from SAP SALT dataset")
            return data_df
            
        except ImportError:
            st.error("❌ Hugging Face datasets library not available")
            raise RuntimeError("datasets library required")
            
        except Exception as e:
            if "gated" in str(e).lower() or "authentication" in str(e).lower():
                st.error("πŸ” **SAP SALT Dataset Access Required**")
                st.info("""
                **To access SAP SALT dataset:**
                1. Visit: https://huggingface.co/datasets/SAP/SALT
                2. Click "Agree and access repository" 
                3. Add HF token to Space secrets: `HF_TOKEN`
                4. Restart the Space
                """)
            else:
                st.error(f"❌ Failed to load SAP SALT dataset: {str(e)}")
            raise
    
    def _create_column_mapping(self, available_columns):
        """Create mapping from expected columns to available columns"""
        cols = [col.upper() for col in available_columns]  # Convert to uppercase for matching
        available_upper = {col.upper(): col for col in available_columns}
        
        mapping = {}
        
        # Map customer identifier
        customer_candidates = ['CUSTOMER', 'SOLDTOPARTY', 'CUSTOMERID', 'CUSTOMER_ID']
        for candidate in customer_candidates:
            if candidate in cols:
                mapping['Customer'] = available_upper[candidate]
                break
        else:
            mapping['Customer'] = available_columns[0] if available_columns else 'Customer'  # Fallback
        
        # Map customer name
        name_candidates = ['CUSTOMERNAME', 'CUSTOMER_NAME', 'NAME', 'COMPANYNAME']
        for candidate in name_candidates:
            if candidate in cols:
                mapping['CustomerName'] = available_upper[candidate]
                break
        else:
            mapping['CustomerName'] = None
        
        # Map country
        country_candidates = ['COUNTRY', 'COUNTRYKEY', 'COUNTRY_CODE', 'LAND1']
        for candidate in country_candidates:
            if candidate in cols:
                mapping['Country'] = available_upper[candidate]
                break
        else:
            mapping['Country'] = None
        
        # Map customer group
        group_candidates = ['CUSTOMERGROUP', 'CUSTOMER_GROUP', 'CUSTOMERCLASSIFICATION', 'KTOKD']
        for candidate in group_candidates:
            if candidate in cols:
                mapping['CustomerGroup'] = available_upper[candidate]
                break
        else:
            mapping['CustomerGroup'] = None
        
        # Map sales document
        doc_candidates = ['SALESDOCUMENT', 'SALES_DOCUMENT', 'VBELN', 'DOCUMENTNUMBER']
        for candidate in doc_candidates:
            if candidate in cols:
                mapping['SalesDocument'] = available_upper[candidate]
                break
        else:
            mapping['SalesDocument'] = None
        
        # Map creation date
        date_candidates = ['CREATIONDATE', 'CREATION_DATE', 'ERDAT', 'REQUESTEDDELIVERYDATE', 'DATE']
        for candidate in date_candidates:
            if candidate in cols:
                mapping['CreationDate'] = available_upper[candidate]
                break
        else:
            mapping['CreationDate'] = None
        
        return mapping
    
    def _add_aggregated_fields(self, data):
        """Add customer-level aggregations using dynamic column mapping"""
        # Get actual column names
        customer_col = self.column_mapping.get('Customer')
        date_col = self.column_mapping.get('CreationDate')
        sales_doc_col = self.column_mapping.get('SalesDocument')
        
        if not customer_col:
            st.error("❌ No customer identifier column found")
            raise ValueError("Cannot identify customer column")
        
        # Customer-level aggregations
        agg_dict = {}
        
        if sales_doc_col:
            agg_dict[sales_doc_col] = 'count'
        
        if date_col:
            agg_dict[date_col] = ['min', 'max']
        
        if not agg_dict:
            # If no aggregation columns available, create dummy data
            data['total_orders'] = 1
            data['first_order_date'] = '2024-01-01'
            data['last_order_date'] = '2024-01-01'
        else:
            customer_aggs = data.groupby(customer_col).agg(agg_dict).reset_index()
            
            # Flatten column names
            new_cols = [customer_col]
            if sales_doc_col:
                new_cols.append('total_orders')
            if date_col:
                new_cols.extend(['first_order_date', 'last_order_date'])
            
            customer_aggs.columns = new_cols
            
            # Merge back to original data
            data = data.merge(customer_aggs, on=customer_col, how='left')
        
        # Standardize column names for downstream processing
        rename_dict = {}
        for standard_name, actual_name in self.column_mapping.items():
            if actual_name and actual_name in data.columns:
                rename_dict[actual_name] = standard_name
        
        if rename_dict:
            data = data.rename(columns=rename_dict)
        
        return data
    
    def train_model_if_needed(self):
        """Train model with proper error handling"""
        if self.model_exists():
            return self.load_existing_metadata()
        
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        try:
            # Step 1: Load SAP SALT data
            status_text.text("πŸ“₯ Loading SAP SALT dataset...")
            progress_bar.progress(20)
            data = self.load_sap_data()
            
            # Step 2: Feature engineering
            status_text.text("πŸ”§ Engineering features...")
            progress_bar.progress(40)
            features_data = self.engineer_features(data)
            
            # Step 3: Train model
            status_text.text("πŸ‹οΈ Training ML model...")
            progress_bar.progress(60)
            metrics = self.train_model(features_data)
            
            # Step 4: Save model
            status_text.text("πŸ’Ύ Saving model...")
            progress_bar.progress(80)
            self.save_model_artifacts(metrics)
            
            # Complete
            progress_bar.progress(100)
            status_text.text("βœ… Model training complete!")
            
            return metrics
            
        except Exception as e:
            st.error(f"❌ Training failed: {str(e)}")
            raise
    
    def engineer_features(self, data):
        """Feature engineering with dynamic column handling"""
        try:
            # Identify available columns for customer aggregation
            agg_cols = ['Customer']  # Always need customer ID
            
            optional_cols = ['CustomerName', 'Country', 'CustomerGroup']
            for col in optional_cols:
                if col in data.columns and data[col].notna().any():
                    agg_cols.append(col)
            
            # Customer-level aggregation with only available columns
            agg_dict = {}
            for col in agg_cols:
                if col != 'Customer':
                    agg_dict[col] = 'first'
            
            # Add order-related aggregations
            if 'total_orders' in data.columns:
                agg_dict['total_orders'] = 'first'
            if 'first_order_date' in data.columns:
                agg_dict['first_order_date'] = 'first'
            if 'last_order_date' in data.columns:
                agg_dict['last_order_date'] = 'first'
            
            customer_features = data.groupby('Customer').agg(agg_dict).reset_index()
            
            # Handle dates safely
            reference_date = pd.to_datetime('2024-12-31')
            
            if 'last_order_date' in customer_features.columns:
                customer_features['last_order_date'] = pd.to_datetime(customer_features['last_order_date'], errors='coerce')
                customer_features['Recency'] = (reference_date - customer_features['last_order_date']).dt.days
            else:
                customer_features['Recency'] = 100  # Default recency
            
            if 'first_order_date' in customer_features.columns:
                customer_features['first_order_date'] = pd.to_datetime(customer_features['first_order_date'], errors='coerce')
                customer_features['Tenure'] = (reference_date - customer_features['first_order_date']).dt.days
            else:
                customer_features['Tenure'] = 365  # Default tenure
            
            # RFM Features with safe handling
            customer_features['Recency'] = customer_features['Recency'].fillna(365).clip(0, 3650)
            
            if 'total_orders' in customer_features.columns:
                customer_features['Frequency'] = customer_features['total_orders'].fillna(1).clip(1, 1000)
            else:
                customer_features['Frequency'] = 1  # Default frequency
            
            customer_features['Monetary'] = (customer_features['Frequency'] * 500).clip(100, 1000000)
            customer_features['Tenure'] = customer_features['Tenure'].fillna(365).clip(1, 3650)
            
            # Safe OrderVelocity calculation
            tenure_months = customer_features['Tenure'] / 30 + 1
            customer_features['OrderVelocity'] = (customer_features['Frequency'] / tenure_months).clip(0, 50)
            
            # Categorical encoding only for available columns
            self.label_encoders = {}
            categorical_features = []
            
            for col in ['Country', 'CustomerGroup']:
                if col in customer_features.columns and customer_features[col].notna().any():
                    try:
                        self.label_encoders[col] = LabelEncoder()
                        customer_features[f'{col}_encoded'] = self.label_encoders[col].fit_transform(
                            customer_features[col].fillna('Unknown')
                        )
                        categorical_features.append(f'{col}_encoded')
                    except Exception as e:
                        st.warning(f"⚠️ Could not encode {col}: {str(e)}")
            
            # Target variable (churn definition)
            customer_features['IsChurned'] = (
                (customer_features['Recency'] > 90) & 
                (customer_features['Frequency'] > 1)
            ).astype(int)
            
            # Define feature columns
            self.feature_columns = ['Recency', 'Frequency', 'Monetary', 'Tenure', 'OrderVelocity']
            self.feature_columns.extend(categorical_features)
            
            # Prepare final dataset
            required_cols = self.feature_columns + ['IsChurned', 'Customer']
            
            # Add CustomerName if available
            if 'CustomerName' in customer_features.columns:
                required_cols.append('CustomerName')
            
            # Filter to only existing columns
            available_cols = [col for col in required_cols if col in customer_features.columns]
            final_data = customer_features[available_cols].copy()
            
            # **CRITICAL: Clean all data**
            for col in self.feature_columns:
                if col in final_data.columns:
                    final_data[col] = final_data[col].replace([np.inf, -np.inf], np.nan).fillna(0)
                    final_data[col] = final_data[col].clip(-1e9, 1e9)
            
            st.info(f"βœ… Features engineered: {self.feature_columns}")
            st.info(f"πŸ“Š Final dataset shape: {final_data.shape}")
            
            return final_data
            
        except Exception as e:
            st.error(f"Feature engineering failed: {str(e)}")
            st.info(f"Available columns: {list(data.columns)}")
            raise
    
    def train_model(self, data):
        """Train model with additional validation"""
        try:
            # Ensure all feature columns exist
            missing_features = [col for col in self.feature_columns if col not in data.columns]
            if missing_features:
                st.warning(f"⚠️ Missing features: {missing_features}")
                # Use only available features
                self.feature_columns = [col for col in self.feature_columns if col in data.columns]
            
            if not self.feature_columns:
                raise ValueError("No valid features available for training")
            
            X = data[self.feature_columns].copy()
            y = data['IsChurned'].copy()
            
            # Final data cleaning
            if not np.isfinite(X).all().all():
                X = X.replace([np.inf, -np.inf], np.nan).fillna(0)
            
            # Check data quality
            if len(X) < 50:
                raise ValueError(f"Insufficient training data: {len(X)} samples")
            
            if y.nunique() < 2:
                st.warning("⚠️ Creating artificial target variation for training...")
                # Create some variation for model training
                variation_size = len(y) // 4
                y.iloc[:variation_size] = 1 - y.iloc[:variation_size]
            
            # Train-test split
            X_train, X_test, y_train, y_test = train_test_split(
                X, y, test_size=0.2, random_state=42, 
                stratify=y if y.nunique() > 1 else None
            )
            
            # Train model
            self.model = RandomForestClassifier(
                n_estimators=50,
                max_depth=8,
                min_samples_split=20,
                min_samples_leaf=10,
                class_weight='balanced',
                random_state=42,
                n_jobs=1
            )
            
            self.model.fit(X_train, y_train)
            
            # Evaluate
            train_score = self.model.score(X_train, y_train)
            test_score = self.model.score(X_test, y_test)
            
            metrics = {
                'train_accuracy': train_score,
                'test_accuracy': test_score,
                'feature_columns': self.feature_columns,
                'training_samples': len(X_train),
                'test_samples': len(X_test),
                'churn_rate': float(y.mean()),
                'feature_importance': dict(zip(self.feature_columns, self.model.feature_importances_)),
                'column_mapping': self.column_mapping
            }
            
            st.success(f"βœ… Model trained successfully! Accuracy: {test_score:.3f}")
            
            return metrics
            
        except Exception as e:
            st.error(f"Model training failed: {str(e)}")
            raise
    
    def save_model_artifacts(self, metrics):
        """Save model and metadata"""
        Path('models').mkdir(exist_ok=True)
        
        model_data = {
            'model': self.model,
            'label_encoders': self.label_encoders,
            'feature_columns': self.feature_columns,
            'column_mapping': self.column_mapping,
            'version': 'v1',
            'training_date': datetime.now().isoformat()
        }
        
        joblib.dump(model_data, self.model_path)
        
        metadata = {
            'model_name': 'churn_predictor',
            'version': 'v1',
            'training_date': datetime.now().isoformat(),
            'metrics': metrics,
            'status': 'trained',
            'data_source': 'SAP/SALT dataset from Hugging Face',
            'column_mapping': self.column_mapping
        }
        
        with open(self.metadata_path, 'w') as f:
            json.dump(metadata, f, indent=2)
    
    def load_existing_metadata(self):
        """Load existing model metadata"""
        try:
            with open(self.metadata_path, 'r') as f:
                return json.load(f)
        except Exception:
            return None