Spaces:
Sleeping
Sleeping
File size: 37,210 Bytes
f67b2bb d261501 4caf329 15c1bc9 87a8746 a81e9f0 15c1bc9 87a8746 15c1bc9 87a8746 15c1bc9 87a8746 83fc24e 15c1bc9 83fc24e 15c1bc9 f67b2bb d261501 f67b2bb 15c1bc9 87a8746 83fc24e 26c7bcc 87a8746 d261501 87a8746 4f19933 87a8746 d261501 87a8746 d261501 87a8746 d261501 f67b2bb 87a8746 d261501 f94228c 87a8746 d261501 f94228c 87a8746 d261501 f94228c 87a8746 f94228c 87a8746 f67b2bb f94228c d261501 f94228c d261501 f94228c d261501 f94228c 87a8746 f94228c d261501 87a8746 f67b2bb 87a8746 d261501 f67b2bb 87a8746 d261501 87a8746 f67b2bb 87a8746 f94228c 87a8746 d261501 87a8746 a81e9f0 d261501 a81e9f0 87a8746 a81e9f0 4f19933 87a8746 4f19933 87a8746 4f19933 f94228c 4f19933 87a8746 4f19933 87a8746 a81e9f0 518e35a d261501 87a8746 d261501 83fc24e 4f19933 d261501 87a8746 d261501 87a8746 f94228c 87a8746 d261501 4f19933 f94228c f67b2bb 87a8746 4f19933 f94228c f67b2bb 87a8746 4f19933 f94228c 87a8746 f94228c 87a8746 d261501 87a8746 4f19933 d261501 87a8746 4f19933 d261501 87a8746 f94228c 4f19933 87a8746 4f19933 87a8746 d261501 87a8746 a81e9f0 d261501 87a8746 f94228c 83fc24e 4f19933 f67b2bb f94228c a81e9f0 f67b2bb 87a8746 d261501 87a8746 d261501 f94228c f67b2bb d261501 f67b2bb d261501 f94228c d261501 f94228c 83fc24e f94228c 83fc24e f94228c d261501 f94228c d261501 f94228c d261501 87a8746 106eeca f67b2bb 87a8746 f94228c 781a2f6 f94228c 83fc24e f94228c 87a8746 781a2f6 f94228c 83fc24e f94228c 87a8746 f94228c 87a8746 d261501 f94228c 87a8746 f94228c d261501 87a8746 106eeca f94228c 87a8746 106eeca f67b2bb d261501 106eeca f67b2bb f94228c 87a8746 f94228c 87a8746 106eeca f67b2bb f94228c 87a8746 d261501 f67b2bb d261501 83fc24e d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 4f19933 f94228c 87a8746 d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 83fc24e d261501 f94228c f67b2bb d261501 f67b2bb d261501 f67b2bb d261501 a81e9f0 f67b2bb d261501 f67b2bb d261501 f67b2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
#Stable version for Yazaki India Ltd
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import random
# Page configuration
st.set_page_config(
page_title="Yazaki India Ltd - Complete Supply Chain Hub",
page_icon="๐",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS (same as before)
st.markdown("""
<style>
.tab-header {
background: linear-gradient(90deg, #059669, #10b981);
padding: 0.8rem;
border-radius: 8px;
color: white;
margin-bottom: 1rem;
}
.alert-card {
background: #fff5f5;
padding: 1rem;
border-radius: 8px;
border-left: 6px solid #e53e3e;
margin: 0.5rem 0;
}
.ecosystem-alert {
background: #fef2f2;
padding: 1rem;
border-radius: 8px;
border-left: 6px solid #dc2626;
margin: 0.5rem 0;
}
.root-cause {
background: #fef7e7;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 3px solid #f6ad55;
}
.mitigation {
background: #e6fffa;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 3px solid #4fd1c7;
}
.best-option {
background: #f0fff4;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 4px solid #48bb78;
border: 2px solid #48bb78;
}
.tier-impact {
background: #fff7ed;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 4px solid #f97316;
}
.mitigation-executed {
background: #ecfdf5;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 4px solid #10b981;
border: 2px solid #10b981;
}
.mitigation-recommended {
background: #eff6ff;
padding: 0.8rem;
border-radius: 6px;
margin: 0.3rem 0;
border-left: 4px solid #3b82f6;
}
.normal-status {
background: #f0fff4;
padding: 0.6rem;
border-radius: 6px;
border-left: 4px solid #48bb78;
margin: 0.2rem 0;
}
.external-signal {
background: #f3e5f5;
padding: 0.6rem;
border-radius: 6px;
border-left: 4px solid #9c27b0;
margin: 0.2rem 0;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'executed_mitigations' not in st.session_state:
st.session_state.executed_mitigations = []
if 'external_signals' not in st.session_state:
st.session_state.external_signals = []
# UPDATED: Generate 8-week forward-looking demand data
@st.cache_data
def generate_8week_demand_data():
today = datetime(2025, 8, 4)
dates = [today + timedelta(days=x) for x in range(56)] # 8 weeks = 56 days
materials = [
'YAZ001-Wiring Harness',
'YAZ002-Connectors',
'YAZ003-Terminals',
'YAZ004-Sensors',
'YAZ005-Cable Assemblies'
]
all_data = []
for material in materials:
np.random.seed(hash(material) % 1000)
# Generate base demand patterns
base_demand = np.random.normal(150, 15, 56)
# First 14 days: FIRM DEMAND
firm_demand = np.clip(base_demand[:14], 100, 200).astype(int)
# Days 15-56: Customer shared demand (tentative)
customer_shared = np.clip(base_demand[14:] * (1 + 0.05 * np.sin(np.linspace(0, 3.14, 42))), 80, 220).astype(int)
# Days 15-56: AI-corrected demand (with external signals)
external_factors = np.zeros(42)
# Weather impact (weeks 3-4)
external_factors[0:14] += np.random.normal(0, 5, 14)
# EV policy impact (weeks 5-8)
if 'YAZ' in material:
external_factors[14:] += 10
# Festive season boost (weeks 6-7)
external_factors[28:42] += 8
corrected_demand = np.clip(customer_shared + external_factors, 60, 250).astype(int)
# Generate supply plan for 56 days
supply_capacity = np.random.normal(155, 12, 56)
supply_plan = np.clip(supply_capacity, 120, 220).astype(int)
# Apply disruptions to supply (weather impact on days 15-18)
supply_actual = supply_plan.copy()
supply_actual[15:19] = (supply_actual[15:19] * 0.8).astype(int)
for i, date in enumerate(dates):
# Determine which demand to use
if i < 14:
demand_used = firm_demand[i]
firm_val = firm_demand[i]
customer_val = None
corrected_val = None
demand_type = "Firm"
else:
demand_used = corrected_demand[i-14]
firm_val = None
customer_val = customer_shared[i-14]
corrected_val = corrected_demand[i-14]
demand_type = "AI-Corrected"
# Calculate shortfall
shortfall = max(0, demand_used - supply_actual[i])
all_data.append({
'Date': date,
'Week': f"Week {(i//7)+1}",
'Day': i + 1,
'Material': material,
'Firm_Demand': firm_val,
'Customer_Demand': customer_val,
'Corrected_Demand': corrected_val,
'Demand_Used': demand_used,
'Supply_Plan': supply_plan[i],
'Supply_Projected': supply_actual[i],
'Shortfall': shortfall,
'Demand_Type': demand_type,
'Gap': supply_actual[i] - demand_used
})
return pd.DataFrame(all_data)
# UPDATED: Tier-2 suppliers for Yazaki India
@st.cache_data
def get_tier2_suppliers():
return {
'Electro Components Pvt Ltd': {
'location': 'Chennai',
'materials': ['YAZ001-Wiring Harness', 'YAZ002-Connectors'],
'capacity': 210,
'reliability': 93,
'lead_time': 3,
'risk_factors': ['Port delays', 'Power outages', 'Labor strikes']
},
'Connectix Solutions': {
'location': 'Ahmedabad',
'materials': ['YAZ003-Terminals', 'YAZ004-Sensors'],
'capacity': 190,
'reliability': 90,
'lead_time': 2,
'risk_factors': ['Raw material shortage', 'Transportation issues', 'Equipment failure']
},
'WireCraft Industries': {
'location': 'Pune',
'materials': ['YAZ005-Cable Assemblies', 'YAZ001-Wiring Harness'],
'capacity': 230,
'reliability': 87,
'lead_time': 1,
'risk_factors': ['Quality checks', 'Capacity limits', 'Supplier disputes']
}
}
# UPDATED: Ecosystem data with Yazaki-specific naming
@st.cache_data
def generate_ecosystem_data():
today = datetime(2025, 8, 4)
dates = [today + timedelta(days=x) for x in range(14)]
suppliers = get_tier2_suppliers()
all_data = []
for supplier_name, supplier_info in suppliers.items():
for material in supplier_info['materials']:
np.random.seed(hash(supplier_name + material) % 1000)
base_capacity = supplier_info['capacity']
normal_supply = np.full(14, base_capacity, dtype=int)
disrupted_supply = normal_supply.copy()
if supplier_name == 'Electro Components Pvt Ltd':
disrupted_supply[3:7] = (disrupted_supply[3:7] * 0.3).astype(int)
disruption_cause = "Port delays in Chennai affecting imports"
disruption_days = list(range(3, 7))
elif supplier_name == 'Connectix Solutions':
disrupted_supply[5:8] = (disrupted_supply[5:8] * 0.5).astype(int)
disruption_cause = "Critical equipment failure at Ahmedabad facility"
disruption_days = list(range(5, 8))
elif supplier_name == 'WireCraft Industries':
disrupted_supply[8:11] = (disrupted_supply[8:11] * 0.2).astype(int)
disruption_cause = "Labor strike at Pune facility"
disruption_days = list(range(8, 11))
else:
disruption_cause = "No disruption"
disruption_days = []
lead_time = supplier_info['lead_time']
yazaki_supply = np.full(14, base_capacity, dtype=int)
for disruption_day in disruption_days:
arrival_day = disruption_day + lead_time
if arrival_day < 14:
reduction = normal_supply[disruption_day] - disrupted_supply[disruption_day]
yazaki_supply[arrival_day] = max(yazaki_supply[arrival_day] - reduction, 0)
for i, date in enumerate(dates):
all_data.append({
'Date': date,
'Supplier': supplier_name,
'Material': material,
'Tier2_Normal_Supply': int(normal_supply[i]),
'Tier2_Disrupted_Supply': int(disrupted_supply[i]),
'Tier2_Impact': int(normal_supply[i] - disrupted_supply[i]),
'Yazaki_Normal_Supply': int(normal_supply[i]),
'Yazaki_Impacted_Supply': int(yazaki_supply[i]),
'Yazaki_Impact': int(normal_supply[i] - yazaki_supply[i]),
'Disruption_Cause': disruption_cause if i in disruption_days else "Normal Operations",
'Lead_Time_Days': lead_time,
'Is_Disrupted': i in disruption_days,
'Is_Yazaki_Impacted': yazaki_supply[i] < normal_supply[i]
})
return pd.DataFrame(all_data)
# External signals (unchanged)
@st.cache_data
def get_external_signals():
return [
{'Source': 'Weather API', 'Signal': 'Heavy rains forecasted in Chennai for next 3 days', 'Impact': 'Supply Risk', 'Confidence': 95},
{'Source': 'Market Intelligence', 'Signal': 'EV sales up 25% this quarter', 'Impact': 'Demand Increase', 'Confidence': 88},
{'Source': 'News Analytics', 'Signal': 'Upcoming festive season - historically 15% demand spike', 'Impact': 'Demand Surge', 'Confidence': 92},
{'Source': 'Supplier Network', 'Signal': 'Tier-2 supplier capacity increased by 20%', 'Impact': 'Supply Boost', 'Confidence': 98},
{'Source': 'Social Media', 'Signal': 'Positive sentiment around new Maruti EV model', 'Impact': 'Demand Growth', 'Confidence': 75},
{'Source': 'Government Portal', 'Signal': 'New EV subsidy policy effective next week', 'Impact': 'Market Expansion', 'Confidence': 100}
]
# UPDATED: Generate alerts for 8-week data
def generate_detailed_alerts(df):
alerts = []
for material in df['Material'].unique():
material_data = df[df['Material'] == material]
shortage_days = material_data[material_data['Shortfall'] > 5]
if not shortage_days.empty:
for _, row in shortage_days.iterrows():
root_causes = []
if row['Day'] > 14:
if row['Corrected_Demand'] and row['Customer_Demand']:
diff = row['Corrected_Demand'] - row['Customer_Demand']
if diff > 10:
root_causes.append(f"AI detected {diff} units additional demand from external signals")
if row['Day'] >= 15 and row['Day'] <= 18:
root_causes.append("Chennai plant weather disruption reducing supply")
else:
root_causes.append("Firm demand exceeding supply capacity")
if not root_causes:
root_causes.append("Base demand exceeding current supply capacity")
mitigation_options = [
{"option": "Activate Pune backup production", "impact": "+30 units/day", "cost": "High", "timeline": "24 hours"},
{"option": "Expedite Tier-2 supplier shipments", "impact": "+15 units/day", "cost": "Medium", "timeline": "12 hours"},
{"option": "Emergency air freight from backup suppliers", "impact": "+40 units/day", "cost": "Very High", "timeline": "6 hours"},
{"option": "Reallocate inventory from other plants", "impact": "+20 units/day", "cost": "Low", "timeline": "18 hours"}
]
if row['Shortfall'] > 30:
best_option = mitigation_options[2]
elif row['Shortfall'] > 15:
best_option = mitigation_options[0]
else:
best_option = mitigation_options[1]
alerts.append({
'material': material,
'date': row['Date'].strftime('%Y-%m-%d'),
'week': row['Week'],
'shortage': int(row['Shortfall']),
'demand_type': row['Demand_Type'],
'severity': 'Critical' if row['Shortfall'] > 30 else 'High' if row['Shortfall'] > 15 else 'Medium',
'root_causes': root_causes,
'mitigation_options': mitigation_options,
'best_option': best_option
})
return alerts
# Keep mitigation strategies unchanged
def generate_mitigation_strategies(supplier, material, impact_amount, impact_days):
base_strategies = [
{
'strategy': 'Activate Alternate Supplier',
'description': f'Engage backup supplier for {material}',
'timeline': '24-48 hours',
'cost': 'High (+15% unit cost)',
'effectiveness': '90%',
'capacity': f'+{impact_amount * 0.9:.0f} units/day',
},
{
'strategy': 'Emergency Air Freight',
'description': f'Air freight {material} from other regions',
'timeline': '6-12 hours',
'cost': 'Very High (+40% logistics cost)',
'effectiveness': '75%',
'capacity': f'+{impact_amount * 0.75:.0f} units/day',
},
{
'strategy': 'Inventory Reallocation',
'description': f'Reallocate {material} from other plants',
'timeline': '12-24 hours',
'cost': 'Medium (+5% handling cost)',
'effectiveness': '60%',
'capacity': f'+{impact_amount * 0.6:.0f} units/day',
}
]
if impact_amount > 100:
recommended = [0, 1]
elif impact_amount > 50:
recommended = [0, 2]
else:
recommended = [2]
return base_strategies, recommended
# Load data
df_demand = generate_8week_demand_data()
df_ecosystem = generate_ecosystem_data()
external_signals = get_external_signals()
suppliers = get_tier2_suppliers()
# Simple title (header removed as requested)
st.title("Supply Chain Command Center")
# Tab Navigation (same as before)
st.sidebar.title("๐ฏ Dashboard Navigation")
dashboard_tab = st.sidebar.radio(
"Select Dashboard:",
["๐ Demand & Supply Forecast", "๐ Ecosystem Supplier Impact", "๐ก๏ธ Buffer Optimizer"],
index=0
)
# UPDATED TAB 1: 8-WEEK DEMAND & SUPPLY FORECAST
if dashboard_tab == "๐ Demand & Supply Forecast":
st.markdown("""
<div class="tab-header">
<h2>๐ 8-Week Demand & Supply Forecast Dashboard</h2>
<p>8-Week Planning Horizon | Firm Demand (Days 1-14) | AI-Corrected Demand (Days 15-56)</p>
</div>
""", unsafe_allow_html=True)
# Material selection
selected_materials_demand = st.sidebar.multiselect(
"Focus Materials:",
df_demand['Material'].unique(),
default=df_demand['Material'].unique()[:3]
)
# Week filter
week_filter = st.sidebar.selectbox(
"Focus on Weeks:",
["All 8 Weeks", "Weeks 1-2 (Firm)", "Weeks 3-4", "Weeks 5-6", "Weeks 7-8"],
index=0
)
# Filter data
filtered_df_demand = df_demand[df_demand['Material'].isin(selected_materials_demand)]
if week_filter != "All 8 Weeks":
if week_filter == "Weeks 1-2 (Firm)":
filtered_df_demand = filtered_df_demand[filtered_df_demand['Day'] <= 14]
elif week_filter == "Weeks 3-4":
filtered_df_demand = filtered_df_demand[(filtered_df_demand['Day'] > 14) & (filtered_df_demand['Day'] <= 28)]
elif week_filter == "Weeks 5-6":
filtered_df_demand = filtered_df_demand[(filtered_df_demand['Day'] > 28) & (filtered_df_demand['Day'] <= 42)]
else: # Weeks 7-8
filtered_df_demand = filtered_df_demand[filtered_df_demand['Day'] > 42]
# Generate and display alerts
st.subheader("๐จ 8-Week Supply Chain Alerts")
alerts = generate_detailed_alerts(filtered_df_demand)
if alerts:
for i, alert in enumerate(alerts[:3]):
st.markdown(f"""
<div class="alert-card">
<h4>โ ๏ธ {alert['material']} - {alert['severity']} Shortage Alert</h4>
<p><b>Date:</b> {alert['date']} ({alert['week']}) | <b>Shortage:</b> {alert['shortage']} units | <b>Type:</b> {alert['demand_type']}</p>
</div>
""", unsafe_allow_html=True)
st.markdown("**๐ Root Cause Analysis:**")
for cause in alert['root_causes']:
st.markdown(f"""
<div class="root-cause">
๐ฏ {cause}
</div>
""", unsafe_allow_html=True)
st.markdown("**โก Mitigation Options:**")
for option in alert['mitigation_options']:
is_best = option == alert['best_option']
option_class = "best-option" if is_best else "mitigation"
best_indicator = "๐ **RECOMMENDED** " if is_best else ""
st.markdown(f"""
<div class="{option_class}">
{best_indicator}<b>{option['option']}</b><br>
๐ Impact: {option['impact']} | ๐ฐ Cost: {option['cost']} | โฑ๏ธ Timeline: {option['timeline']}
</div>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
if st.button(f"โ
Implement Solution", key=f"demand_implement_{i}"):
st.success(f"Implementing: {alert['best_option']['option']}")
st.markdown("---")
else:
st.markdown("""
<div class="normal-status">
โ
<b>All Good!</b> No critical supply shortages detected in the 8-week horizon.
</div>
""", unsafe_allow_html=True)
# UPDATED: 8-Week Detailed Planning Table
st.subheader("๐ 8-Week Demand-Supply Planning Table")
# Prepare display table
display_df = filtered_df_demand.copy()
display_df['Date_Display'] = display_df['Date'].dt.strftime('%m-%d')
# Create styled table
table_cols = ['Date_Display', 'Week', 'Material', 'Firm_Demand', 'Customer_Demand',
'Corrected_Demand', 'Supply_Projected', 'Shortfall']
table_data = display_df[table_cols].copy()
table_data.columns = ['Date', 'Week', 'Material', 'Firm Demand', 'Customer Demand',
'Corrected Demand', 'Supply Plan', 'Shortfall']
# Color coding function
def highlight_shortfall(val):
if pd.isna(val):
return ''
return 'background-color: #ffcccc' if val > 0 else ''
def highlight_firm_period(row):
if pd.notna(row['Firm Demand']):
return ['background-color: #e6f3ff'] * len(row)
return [''] * len(row)
# Apply styling
styled_table = table_data.style.applymap(highlight_shortfall, subset=['Shortfall'])
styled_table = styled_table.apply(highlight_firm_period, axis=1)
st.dataframe(styled_table, use_container_width=True, height=500)
# Weekly summary
st.subheader("๐ Weekly Summary")
weekly_summary = filtered_df_demand.groupby(['Week', 'Material']).agg({
'Demand_Used': 'sum',
'Supply_Projected': 'sum',
'Shortfall': 'sum'
}).reset_index()
weekly_summary['Balance'] = weekly_summary['Supply_Projected'] - weekly_summary['Demand_Used']
st.dataframe(weekly_summary, use_container_width=True)
# Enhanced visualization
st.subheader("๐ 8-Week Demand vs Supply Outlook")
for material in selected_materials_demand:
material_data = filtered_df_demand[filtered_df_demand['Material'] == material]
st.markdown(f"**{material}**")
fig = go.Figure()
# Add demand used line
fig.add_trace(go.Scatter(
x=material_data['Date'],
y=material_data['Demand_Used'],
mode='lines+markers',
name='Demand Used',
line=dict(color='blue', width=3),
marker=dict(size=6)
))
# Add supply line
fig.add_trace(go.Scatter(
x=material_data['Date'],
y=material_data['Supply_Projected'],
mode='lines+markers',
name='Supply Projected',
line=dict(color='green', width=3),
marker=dict(size=6)
))
# Highlight shortfall areas
shortage_data = material_data[material_data['Shortfall'] > 0]
if not shortage_data.empty:
fig.add_trace(go.Scatter(
x=shortage_data['Date'],
y=shortage_data['Supply_Projected'],
mode='markers',
name='Shortage Days',
marker=dict(color='red', size=10, symbol='x'),
))
# Mark firm demand period
firm_data = material_data[material_data['Day'] <= 14]
if not firm_data.empty:
fig.add_vrect(
x0=firm_data['Date'].min(),
x1=firm_data['Date'].max(),
fillcolor="lightblue",
opacity=0.2,
line_width=0,
annotation_text="Firm Demand Period",
annotation_position="top left"
)
fig.update_layout(
title=f'{material} - 8-Week Supply vs Demand Forecast',
xaxis_title='Date',
yaxis_title='Units',
height=400,
showlegend=True,
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
# External demand sensing (same as before)
st.subheader("๐ก Real-time External Demand Sensing")
col1, col2 = st.columns(2)
with col1:
st.write("**Active External Signals:**")
for signal in external_signals:
confidence_color = "๐ข" if signal['Confidence'] > 90 else "๐ก" if signal['Confidence'] > 80 else "๐ "
st.markdown(f"""
<div class="external-signal">
<b>{confidence_color} {signal['Source']}</b><br>
{signal['Signal']}<br>
<small>Impact: {signal['Impact']} | Confidence: {signal['Confidence']}%</small>
</div>
""", unsafe_allow_html=True)
with col2:
st.write("**8-Week Scenario Planning:**")
scenario = st.selectbox("Select Scenario to Test:",
["Base Case", "Extended Monsoon", "Sustained EV Boost", "Supply Chain Strike"])
if st.button("๐ฎ Run 8-Week Scenario", key="demand_scenario"):
if scenario == "Extended Monsoon":
st.error("Scenario: 30% supply reduction for 3 weeks. Activating multi-tier contingency plans...")
elif scenario == "Sustained EV Boost":
st.warning("Scenario: 25% demand increase for 6 weeks. Scaling ecosystem capacity...")
elif scenario == "Supply Chain Strike":
st.info("Scenario: Multi-supplier disruption. Implementing emergency protocols...")
# Keep TAB 2 and TAB 3 unchanged from previous version, but replace Rane with Yazaki in variables and text
elif dashboard_tab == "๐ Ecosystem Supplier Impact":
st.markdown("""
<div class="tab-header">
<h2>๐ Ecosystem Supplier Impact Dashboard</h2>
<p>Tier 2 Supplier Disruption Analysis | Cascading Impact Modeling | Automated Mitigation Response</p>
</div>
""", unsafe_allow_html=True)
selected_suppliers = st.sidebar.multiselect(
"Monitor Suppliers:",
list(suppliers.keys()),
default=list(suppliers.keys())
)
st.subheader("๐จ Live Ecosystem Supply Chain Alerts")
ecosystem_alerts = []
for supplier in selected_suppliers:
supplier_data = df_ecosystem[df_ecosystem['Supplier'] == supplier]
disrupted_data = supplier_data[supplier_data['Is_Disrupted'] == True]
if not disrupted_data.empty:
for material in disrupted_data['Material'].unique():
material_disruptions = disrupted_data[disrupted_data['Material'] == material]
total_impact = material_disruptions['Tier2_Impact'].sum()
impact_days = len(material_disruptions)
first_impact_date = material_disruptions['Date'].min()
yazaki_impacted = supplier_data[
(supplier_data['Material'] == material) &
(supplier_data['Is_Yazaki_Impacted'] == True)
]
if not yazaki_impacted.empty:
yazaki_impact_start = yazaki_impacted['Date'].min()
yazaki_impact_days = len(yazaki_impacted)
yazaki_total_impact = yazaki_impacted['Yazaki_Impact'].sum()
ecosystem_alerts.append({
'supplier': supplier,
'material': material,
'disruption_cause': material_disruptions.iloc[0]['Disruption_Cause'],
'tier2_impact_start': first_impact_date,
'tier2_impact_days': impact_days,
'tier2_total_impact': total_impact,
'yazaki_impact_start': yazaki_impact_start,
'yazaki_impact_days': yazaki_impact_days,
'yazaki_total_impact': yazaki_total_impact,
'lead_time': material_disruptions.iloc[0]['Lead_Time_Days']
})
if ecosystem_alerts:
for alert in ecosystem_alerts:
st.markdown(f"""
<div class="ecosystem-alert">
<h4>โ ๏ธ Tier 2 Supplier Disruption Alert</h4>
<p><b>Supplier:</b> {alert['supplier']} | <b>Material:</b> {alert['material']}</p>
<p><b>Root Cause:</b> {alert['disruption_cause']}</p>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("**๐ญ Tier 2 Supplier Impact:**")
st.markdown(f"""
<div class="tier-impact">
๐
<b>Impact Period:</b> {alert['tier2_impact_start'].strftime('%Y-%m-%d')} ({alert['tier2_impact_days']} days)<br>
๐ <b>Total Supply Lost:</b> {alert['tier2_total_impact']} units<br>
๐ฏ <b>Daily Impact:</b> {alert['tier2_total_impact'] // alert['tier2_impact_days']} units/day
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("**โ๏ธ Yazaki India Ltd Impact (with Lead Time):**")
st.markdown(f"""
<div class="tier-impact">
๐
<b>Impact Period:</b> {alert['yazaki_impact_start'].strftime('%Y-%m-%d')} ({alert['yazaki_impact_days']} days)<br>
๐ <b>Total Supply Lost:</b> {alert['yazaki_total_impact']} units<br>
โฑ๏ธ <b>Lead Time Delay:</b> {alert['lead_time']} days
</div>
""", unsafe_allow_html=True)
strategies, recommended_indices = generate_mitigation_strategies(
alert['supplier'],
alert['material'],
alert['yazaki_total_impact'] // alert['yazaki_impact_days'],
alert['yazaki_impact_days']
)
st.markdown("**๐ค Agentic AI Mitigation Strategies:**")
for i, strategy in enumerate(strategies):
is_recommended = i in recommended_indices
is_executed = f"eco_{alert['supplier']}_{alert['material']}_{i}" in st.session_state.executed_mitigations
if is_executed:
card_class = "mitigation-executed"
status_prefix = "โ
**EXECUTED** "
elif is_recommended:
card_class = "mitigation-recommended"
status_prefix = "๐ **AI RECOMMENDED** "
else:
card_class = "mitigation-recommended"
status_prefix = ""
st.markdown(f"""
<div class="{card_class}">
{status_prefix}<b>{strategy['strategy']}</b><br>
๐ {strategy['description']}<br>
โฑ๏ธ <b>Timeline:</b> {strategy['timeline']} | ๐ฐ <b>Cost:</b> {strategy['cost']}<br>
๐ <b>Effectiveness:</b> {strategy['effectiveness']} | ๐ <b>Capacity:</b> {strategy['capacity']}
</div>
""", unsafe_allow_html=True)
strategy_key = f"eco_{alert['supplier']}_{alert['material']}_{i}"
col1, col2 = st.columns([2, 1])
with col1:
if not is_executed:
if st.button(f"๐ Execute Strategy", key=f"execute_{strategy_key}"):
st.session_state.executed_mitigations.append(strategy_key)
st.success(f"Executing: {strategy['strategy']}")
st.rerun()
else:
st.success("Strategy Active")
with col2:
if is_recommended:
st.button("๐ Recommended", key=f"rec_{strategy_key}", disabled=True)
st.markdown("---")
else:
st.markdown("""
<div class="normal-status">
โ
<b>Ecosystem Healthy!</b> No supplier disruptions detected in the current timeframe.
</div>
""", unsafe_allow_html=True)
st.subheader("๐ Ecosystem Supply Chain Flow Visualization")
fig = go.Figure()
for supplier in selected_suppliers:
supplier_data = df_ecosystem[df_ecosystem['Supplier'] == supplier]
sample_material = supplier_data['Material'].iloc[0]
material_data = supplier_data[supplier_data['Material'] == sample_material]
fig.add_trace(go.Scatter(
x=material_data['Date'],
y=material_data['Tier2_Disrupted_Supply'],
mode='lines+markers',
name=f'{supplier} (Tier 2)',
line=dict(width=2, dash='dash'),
marker=dict(size=6)
))
fig.add_trace(go.Scatter(
x=material_data['Date'],
y=material_data['Yazaki_Impacted_Supply'],
mode='lines+markers',
name=f'Yazaki Impact from {supplier}',
line=dict(width=3),
marker=dict(size=8)
))
fig.update_layout(
title='Tier 2 Supplier Disruptions โ Yazaki India Ltd Supply Impact',
xaxis_title='Date',
yaxis_title='Supply Units',
height=500,
showlegend=True,
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
# TAB 3: BUFFER OPTIMIZER (same as before)
elif dashboard_tab == "๐ก๏ธ Buffer Optimizer":
st.markdown("""
<div class="tab-header">
<h2>๐ก๏ธ Multi-Echelon Buffer Optimizer</h2>
<p>AI-driven safety-stock recommendations across the full network</p>
</div>
""", unsafe_allow_html=True)
service_level = st.slider("Target Service Level (%)", 90, 99, 95)
review_period = st.number_input("Inventory Review Period (days)", min_value=1, max_value=14, value=1)
z_factor = {90: 1.28, 92: 1.41, 95: 1.64, 97: 1.88, 98: 2.05, 99: 2.33}
Z = z_factor.get(service_level, 1.64)
# Use 8-week demand data for buffer calculation
demand_stats = (df_demand
.groupby("Material")
.agg(DailyMean=("Demand_Used", "mean"),
Sigma=("Demand_Used", "std"))
.reset_index())
lead_times = (df_ecosystem
.groupby("Material")
.agg(LeadTime=("Lead_Time_Days", "max"))
.reset_index())
current_buffers = (df_demand[df_demand["Day"] == 1]
.loc[:, ["Material", "Supply_Projected"]]
.rename(columns={"Supply_Projected": "OnHand"}))
buffer_df = (demand_stats.merge(lead_times, on="Material")
.merge(current_buffers, on="Material", how="left"))
buffer_df["RecommendedBuffer"] = (
Z * buffer_df["Sigma"] * np.sqrt(buffer_df["LeadTime"] + review_period)
).round()
buffer_df["Delta"] = buffer_df["RecommendedBuffer"] - buffer_df["OnHand"]
buffer_df["Action"] = np.where(buffer_df["Delta"] > 50,
"Increase buffer",
np.where(buffer_df["Delta"] < -50,
"Reduce buffer", "OK"))
st.subheader("๐ Buffer Recommendations")
display_cols = ["Material", "OnHand", "RecommendedBuffer", "Delta", "Action"]
st.dataframe(buffer_df[display_cols], use_container_width=True, height=300)
st.subheader("๐ฐ Cost Impact Analysis")
carrying_cost = st.number_input("Annual Carrying Cost (% of unit cost)", min_value=0, max_value=50, value=20)
unit_cost = 100
buffer_df["CostImpact(โน)"] = (buffer_df["Delta"] * unit_cost * (carrying_cost/100) / 12)
cost_chart_data = buffer_df.set_index("Material")["CostImpact(โน)"]
st.bar_chart(cost_chart_data)
st.subheader("โก Execute AI Recommendations")
for _, row in buffer_df.iterrows():
if row["Action"] != "OK":
if st.button(f"๐ {row['Action']} for {row['Material']}", key=row["Material"]):
st.success(f"AI executed: {row['Action']} - Adjusting {int(row['Delta'])} units for {row['Material']}")
# Performance summary
st.subheader("๐ Performance Summary")
col1, col2, col3, col4 = st.columns(4)
if dashboard_tab == "๐ Demand & Supply Forecast":
filtered_df = filtered_df_demand if 'filtered_df_demand' in locals() else df_demand
total_shortage_days = len(filtered_df[filtered_df['Shortfall'] > 0])
critical_shortage_days = len(filtered_df[filtered_df['Shortfall'] > 30])
materials_at_risk = len(filtered_df[filtered_df['Shortfall'] > 5]['Material'].unique())
avg_shortfall = filtered_df['Shortfall'].mean()
with col1:
st.metric("Days with Shortages", f"{total_shortage_days}")
with col2:
st.metric("Critical Days", f"{critical_shortage_days}")
with col3:
st.metric("Materials at Risk", f"{materials_at_risk}")
with col4:
st.metric("Avg Daily Shortfall", f"{avg_shortfall:.1f} units")
elif dashboard_tab == "๐ Ecosystem Supplier Impact":
total_suppliers_disrupted = len(df_ecosystem[df_ecosystem['Is_Disrupted'] == True]['Supplier'].unique())
total_yazaki_impact_days = len(df_ecosystem[df_ecosystem['Is_Yazaki_Impacted'] == True])
total_mitigation_strategies = len([s for s in st.session_state.executed_mitigations if 'eco_' in s])
avg_lead_time = df_ecosystem['Lead_Time_Days'].mean()
with col1:
st.metric("Suppliers Disrupted", f"{total_suppliers_disrupted}")
with col2:
st.metric("Yazaki Impact Days", f"{total_yazaki_impact_days}")
with col3:
st.metric("Active Mitigations", f"{total_mitigation_strategies}")
with col4:
st.metric("Avg Lead Time", f"{avg_lead_time:.1f} days")
else: # Buffer Optimizer
if 'buffer_df' in locals():
total_materials = len(buffer_df)
materials_need_increase = len(buffer_df[buffer_df['Action'] == 'Increase buffer'])
materials_need_decrease = len(buffer_df[buffer_df['Action'] == 'Reduce buffer'])
total_cost_impact = buffer_df['CostImpact(โน)'].sum()
with col1:
st.metric("Total Materials", f"{total_materials}")
with col2:
st.metric("Need Buffer Increase", f"{materials_need_increase}")
with col3:
st.metric("Need Buffer Reduction", f"{materials_need_decrease}")
with col4:
st.metric("Monthly Cost Impact", f"โน{total_cost_impact:,.0f}")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666;'>
<p>๐ <b>Yazaki India Ltd 8-Week Supply Chain Command Center</b> | Firm + AI-Corrected Demand | Ecosystem Intelligence + Buffer Optimization<br>
Powered by Agentic AI | 8-Week Planning Horizon | Comprehensive Supply Chain Resilience</p>
</div>
""", unsafe_allow_html=True)
|