File size: 17,785 Bytes
393aa68
b9fdcec
a21f844
4d067a4
e866dc6
4d067a4
 
393aa68
f2283a2
4d067a4
 
 
f2283a2
4d067a4
 
393aa68
4d067a4
a21f844
393aa68
 
 
4d067a4
 
393aa68
 
 
 
 
 
 
 
 
 
 
 
 
4d067a4
393aa68
 
 
4d067a4
393aa68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d067a4
393aa68
 
 
 
 
4d067a4
393aa68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d067a4
393aa68
 
4d067a4
393aa68
 
4d067a4
393aa68
4d067a4
 
 
 
393aa68
 
 
 
 
 
4d067a4
 
393aa68
 
 
4d067a4
393aa68
 
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
393aa68
 
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
4d067a4
 
393aa68
4d067a4
 
 
 
 
 
393aa68
 
4d067a4
393aa68
 
 
 
 
 
 
 
 
4d067a4
 
 
 
 
 
 
 
393aa68
4d067a4
 
 
 
 
393aa68
4d067a4
393aa68
 
 
 
 
 
 
 
4d067a4
 
 
393aa68
 
 
 
 
4d067a4
 
 
 
 
 
 
393aa68
4d067a4
393aa68
4d067a4
 
393aa68
 
4d067a4
393aa68
 
 
 
4d067a4
 
 
 
393aa68
 
4d067a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393aa68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Setup Hugging Face Inference API for LLAMA3
import os
import requests
import json
import gradio as gr
from typing import List, Dict, Any, Optional
import logging
import time

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration - Set these as environment variables in Hugging Face Spaces
SAP_API_KEY = os.getenv('SAP_API_KEY')  # Set in Space secrets
HF_TOKEN = os.getenv('HF_TOKEN')  # Set in Space secrets
SAP_BASE_URL = "https://sandbox.api.sap.com/s4hanacloud/sap/opu/odata/sap"

# Hugging Face Inference API endpoints
HF_API_BASE = "https://api-inference.huggingface.co/models"
LLAMA3_MODEL = "meta-llama/Meta-Llama-3-8B-Instruct"  # Using inference API

class LLAMA3Client:
    def __init__(self, hf_token: str):
        self.hf_token = hf_token
        self.api_url = f"{HF_API_BASE}/{LLAMA3_MODEL}"
        self.headers = {
            "Authorization": f"Bearer {hf_token}",
            "Content-Type": "application/json"
        }
        
        # Warm up the model
        self._warm_up_model()

    def _warm_up_model(self):
        """Warm up the model to avoid cold start delays"""
        try:
            logger.info("Warming up LLAMA3 model...")
            self._make_inference_request("Hello", max_new_tokens=10)
            logger.info("Model warmed up successfully")
        except Exception as e:
            logger.warning(f"Model warm-up failed: {e}")

    def _make_inference_request(self, prompt: str, max_new_tokens: int = 500, temperature: float = 0.1, max_retries: int = 3) -> str:
        """Make inference request to Hugging Face API with retry logic"""
        
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": max_new_tokens,
                "temperature": temperature,
                "do_sample": True,
                "top_p": 0.9,
                "return_full_text": False
            }
        }
        
        for attempt in range(max_retries):
            try:
                response = requests.post(
                    self.api_url,
                    headers=self.headers,
                    json=payload,
                    timeout=60
                )
                
                if response.status_code == 503:
                    # Model is loading, wait and retry
                    wait_time = min(20 * (attempt + 1), 60)
                    logger.info(f"Model loading, waiting {wait_time}s...")
                    time.sleep(wait_time)
                    continue
                
                response.raise_for_status()
                result = response.json()
                
                if isinstance(result, list) and len(result) > 0:
                    return result[0].get('generated_text', '').strip()
                elif isinstance(result, dict) and 'generated_text' in result:
                    return result['generated_text'].strip()
                else:
                    logger.error(f"Unexpected response format: {result}")
                    return "I received an unexpected response format."
                    
            except requests.exceptions.RequestException as e:
                logger.error(f"Request failed (attempt {attempt + 1}): {e}")
                if attempt == max_retries - 1:
                    return f"Failed to get response after {max_retries} attempts: {str(e)}"
                time.sleep(2 ** attempt)  # Exponential backoff
            except Exception as e:
                logger.error(f"Unexpected error: {e}")
                return f"An unexpected error occurred: {str(e)}"
        
        return "Failed to generate response"

    def generate_response(self, prompt: str, max_length: int = 500, temperature: float = 0.1) -> str:
        """Generate response using LLAMA3 via Inference API"""
        
        # Format prompt for LLAMA3 instruction format
        formatted_prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful SAP data analyst. Provide clear, concise answers based on the provided data. Keep responses under 300 words.<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

"""
        
        try:
            response = self._make_inference_request(
                formatted_prompt, 
                max_new_tokens=min(max_length, 400),  # Limit tokens to avoid timeouts
                temperature=temperature
            )
            
            # Clean up the response
            if response and len(response.strip()) > 0:
                return response
            else:
                return "I couldn't generate a proper response. Please try rephrasing your question."
                
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            return f"I encountered an error while processing your question: {str(e)}"

class SAPDataFetcher:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.headers = {
            "APIKey": api_key,
            "Accept": "application/json",
            "Content-Type": "application/json"
        }

    def _make_request(self, url: str, timeout: int = 30) -> Optional[Dict]:
        """Make HTTP request with proper error handling"""
        try:
            logger.info(f"Making request to: {url}")
            response = requests.get(url, headers=self.headers, timeout=timeout)
            response.raise_for_status()
            data = response.json()
            logger.info(f"Request successful. Response size: {len(str(data))}")
            return data
        except requests.exceptions.RequestException as e:
            logger.error(f"Request failed: {e}")
            return None
        except json.JSONDecodeError as e:
            logger.error(f"JSON decode error: {e}")
            return None

    def fetch_sales_orders(self, top: int = 30) -> List[Dict]:
        """Fetch sales orders with error handling"""
        url = f"{SAP_BASE_URL}/API_SALES_ORDER_SRV/A_SalesOrder?$top={top}&$inlinecount=allpages"
        data = self._make_request(url)

        if data and 'd' in data and 'results' in data['d']:
            orders = data['d']['results']
            # Simplify the data structure
            simplified_orders = []
            for order in orders:
                simplified_order = {
                    "SalesOrder": order.get("SalesOrder", ""),
                    "SalesOrderType": order.get("SalesOrderType", ""),
                    "SalesOrganization": order.get("SalesOrganization", ""),
                    "SoldToParty": order.get("SoldToParty", ""),
                    "CreationDate": order.get("CreationDate", ""),
                    "CreatedByUser": order.get("CreatedByUser", ""),
                    "TransactionCurrency": order.get("TransactionCurrency", ""),
                    "TotalNetAmount": order.get("TotalNetAmount", "0")
                }
                simplified_orders.append(simplified_order)
            return simplified_orders
        else:
            logger.error("Failed to fetch sales orders or invalid response format")
            return []

    def fetch_purchase_orders(self, top: int = 30) -> List[Dict]:
        """Fetch purchase order headers"""
        url = f"{SAP_BASE_URL}/API_PURCHASEORDER_PROCESS_SRV/A_PurchaseOrder?$top={top}&$inlinecount=allpages"
        data = self._make_request(url)

        if data and 'd' in data and 'results' in data['d']:
            orders = data['d']['results']
            simplified_orders = []
            for order in orders:
                simplified_order = {
                    "PurchaseOrder": order.get("PurchaseOrder", ""),
                    "CompanyCode": order.get("CompanyCode", ""),
                    "PurchaseOrderType": order.get("PurchaseOrderType", ""),
                    "CreatedByUser": order.get("CreatedByUser", ""),
                    "CreationDate": order.get("CreationDate", ""),
                    "Supplier": order.get("Supplier", ""),
                    "PurchasingOrganization": order.get("PurchasingOrganization", ""),
                    "PurchasingGroup": order.get("PurchasingGroup", ""),
                    "PurchaseOrderDate": order.get("PurchaseOrderDate", ""),
                    "DocumentCurrency": order.get("DocumentCurrency", ""),
                    "ExchangeRate": order.get("ExchangeRate", "1.0")
                }
                simplified_orders.append(simplified_order)
            return simplified_orders
        else:
            logger.error("Failed to fetch purchase orders or invalid response format")
            return []

    def fetch_purchase_order_items(self, purchase_orders: List[str]) -> List[Dict]:
        """Fetch purchase order items for given order numbers"""
        all_items = []

        for po_number in purchase_orders[:5]:  # Reduced limit for faster processing
            url = f"{SAP_BASE_URL}/API_PURCHASEORDER_PROCESS_SRV/A_PurchaseOrderItem?$filter=PurchaseOrder eq '{po_number}'"
            data = self._make_request(url)

            if data and 'd' in data and 'results' in data['d']:
                items = data['d']['results']
                for item in items:
                    simplified_item = {
                        "PurchaseOrder": item.get("PurchaseOrder", ""),
                        "PurchaseOrderItem": item.get("PurchaseOrderItem", ""),
                        "Plant": item.get("Plant", ""),
                        "StorageLocation": item.get("StorageLocation", ""),
                        "MaterialGroup": item.get("MaterialGroup", ""),
                        "OrderQuantity": item.get("OrderQuantity", "0"),
                        "PurchaseOrderQuantityUnit": item.get("PurchaseOrderQuantityUnit", ""),
                        "DocumentCurrency": item.get("DocumentCurrency", ""),
                        "NetPriceAmount": item.get("NetPriceAmount", "0"),
                        "NetPriceQuantity": item.get("NetPriceQuantity", "0")
                    }
                    all_items.append(simplified_item)

        return all_items

class SAPAgent:
    def __init__(self, data_fetcher: SAPDataFetcher, llama_client: LLAMA3Client):
        self.data_fetcher = data_fetcher
        self.llama_client = llama_client

    def categorize_query(self, question: str) -> str:
        """Determine if query is about sales or purchase orders"""
        category_prompt = f"""Analyze this question and determine if it's about Sales Orders or Purchase Orders:

Question: "{question}"

Guidelines:
- Sales Orders: customer orders, sales transactions, revenue, sold to party
- Purchase Orders: supplier orders, procurement, purchasing, vendor transactions

Respond with exactly one word: "sales" or "purchase" """

        try:
            response = self.llama_client.generate_response(category_prompt, max_length=20, temperature=0)
            category = response.strip().lower()
            return "sales" if "sales" in category else "purchase"
        except Exception as e:
            logger.error(f"Error in categorization: {e}")
            return "purchase"  # Default to purchase

    def needs_item_details(self, question: str) -> bool:
        """Determine if question requires item-level details"""
        detail_prompt = f"""Does this question require detailed item-level information (quantities, prices, materials, line items)?

Question: "{question}"

Answer only "yes" or "no" """

        try:
            response = self.llama_client.generate_response(detail_prompt, max_length=20, temperature=0)
            answer = response.strip().lower()
            return "yes" in answer
        except Exception as e:
            logger.error(f"Error determining detail needs: {e}")
            return False

    def process_query(self, question: str) -> str:
        """Main function to process user queries"""
        logger.info(f"Processing query: {question}")

        # Categorize the query
        category = self.categorize_query(question)
        logger.info(f"Query categorized as: {category}")

        # Fetch appropriate data
        if category == "sales":
            data = self.data_fetcher.fetch_sales_orders()
            data_type = "Sales Orders"
            context = {"orders": data}
        else:
            # Fetch purchase order headers
            po_headers = self.data_fetcher.fetch_purchase_orders()
            context = {"headers": po_headers}
            data_type = "Purchase Order Headers"

            # Check if item details are needed
            if self.needs_item_details(question) and po_headers:
                logger.info("Fetching item-level details")
                po_numbers = [po["PurchaseOrder"] for po in po_headers[:5] if po["PurchaseOrder"]]  # Limit for performance
                po_items = self.data_fetcher.fetch_purchase_order_items(po_numbers)
                context["items"] = po_items
                data_type = "Purchase Orders with Item Details"

                # Calculate total value
                total_value = 0.0
                for item in po_items:
                    try:
                        net_price = float(item.get("NetPriceAmount", 0))
                        quantity = float(item.get("OrderQuantity", 0))
                        total_value += net_price * quantity
                    except (ValueError, TypeError):
                        continue
                context["total_value"] = total_value

        # Generate response using LLAMA3
        return self.generate_response(question, context, data_type)

    def generate_response(self, question: str, context: Dict, data_type: str) -> str:
        """Generate response using LLAMA3"""
        # Limit context size for API efficiency
        context_str = json.dumps(context, indent=2)
        if len(context_str) > 2000:  # Smaller limit for API
            context_str = context_str[:2000] + "... (truncated)"

        prompt = f"""Data Type: {data_type}

Available Data:
{context_str}

User Question: {question}

Instructions:
1. Provide a clear, concise answer based on the data
2. Include specific numbers, dates, or values when relevant
3. If the data doesn't contain enough information to answer fully, mention this
4. Format your response in a user-friendly way
5. Keep response under 250 words"""

        try:
            return self.llama_client.generate_response(prompt, max_length=400, temperature=0.1)
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            return f"I encountered an error while processing your question: {str(e)}"

# Initialize the system
try:
    if not HF_TOKEN:
        logger.error("HF_TOKEN not found in environment variables")
        sap_agent = None
    else:
        llama_client = LLAMA3Client(HF_TOKEN)
        if SAP_API_KEY:
            data_fetcher = SAPDataFetcher(SAP_API_KEY)
            sap_agent = SAPAgent(data_fetcher, llama_client)
            logger.info("SAP Agent initialized successfully")
        else:
            logger.warning("SAP_API_KEY not found. Demo mode enabled.")
            sap_agent = None
except Exception as e:
    logger.error(f"Failed to initialize SAP Agent: {e}")
    sap_agent = None

# Gradio Interface
def chat_with_sap(message, history):
    """Handle chat interactions"""
    if not sap_agent:
        return history + [("System", "SAP Agent not initialized. Please check your HF_TOKEN and SAP_API_KEY in Space secrets.")]

    if not message.strip():
        return history

    try:
        # Add typing indicator
        history = history or []
        history.append((message, "πŸ€” Thinking..."))
        yield history
        
        # Process the query
        response = sap_agent.process_query(message)
        history[-1] = (message, response)
        yield history
        
    except Exception as e:
        error_msg = f"Error processing your request: {str(e)}"
        history = history or []
        if history and history[-1][1] == "πŸ€” Thinking...":
            history[-1] = (message, error_msg)
        else:
            history.append((message, error_msg))
        yield history

def clear_chat():
    return []

# Create Gradio interface
with gr.Blocks(title="SAP Order Analytics Agent with LLAMA3") as demo:
    gr.Markdown("""
    # πŸš€ SAP Order Analytics Agent (Powered by LLAMA3 via Inference API)

    This AI agent uses Meta's LLAMA3 model via Hugging Face Inference API to analyze SAP data. Ask questions like:
    - "How many sales orders do we have?"
    - "What's the total value of all purchase orders?"
    - "Show me recent purchase orders"
    - "What are the top suppliers?"
    
    **Setup Required:**
    1. Set `HF_TOKEN` in Space secrets (your Hugging Face token)
    2. Set `SAP_API_KEY` in Space secrets (your SAP API key)
    3. Ensure you have access to LLAMA3 model on Hugging Face
    """)

    chatbot = gr.Chatbot(
        height=500,
        placeholder="Ask me anything about your SAP orders...",
        show_copy_button=True
    )

    with gr.Row():
        msg = gr.Textbox(
            label="Your Question",
            placeholder="Type your question here...",
            scale=4
        )
        submit_btn = gr.Button("Send", scale=1, variant="primary")
        clear_btn = gr.Button("Clear", scale=1)

    # Event handlers
    submit_btn.click(chat_with_sap, [msg, chatbot], [chatbot])
    msg.submit(chat_with_sap, [msg, chatbot], [chatbot])
    clear_btn.click(clear_chat, outputs=[chatbot])

    # Clear input after submission
    submit_btn.click(lambda: "", outputs=[msg])
    msg.submit(lambda: "", outputs=[msg])

# Launch the interface
if __name__ == "__main__":
    demo.launch(share=True)