File size: 24,905 Bytes
899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 4ef7ee9 899df39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import gradio as gr
import openai
import requests
import json
import os
from typing import Dict, List, Any
from datetime import datetime
from pydantic import BaseModel
# Set up OpenAI client
openai.api_key = os.getenv("OPENAI_API_KEY")
client = openai.OpenAI()
# SAP API Configuration
SAP_API_KEY = os.getenv("SAP_API_KEY")
BASE_URL = "https://sandbox.api.sap.com/s4hanacloud/sap/opu/odata/sap/API_BUSINESS_PARTNER"
CREDIT_API_URL = "https://sandbox.api.sap.com/s4hanacloud/sap/opu/odata/sap/API_CRDTMBUSINESSPARTNER"
class WorkflowStep(BaseModel):
"""Model for workflow step tracking"""
step_number: int
description: str
status: str # pending, in_progress, completed, failed
result: Any = None
timestamp: datetime = datetime.now()
class MultiStepWorkflow(BaseModel):
"""Model for tracking multi-step workflows"""
workflow_id: str
name: str
steps: List[WorkflowStep]
current_step: int = 0
status: str = "pending" # pending, running, completed, failed
final_result: Any = None
class SAPBusinessPartnerAgent:
def __init__(self):
self.conversation_history = []
self.active_workflows = {}
def parse_search_query(self, query: str) -> Dict[str, Any]:
"""Parse natural language query into SAP API parameters using OpenAI"""
system_prompt = """
Parse this business partner search query into SAP OData parameters.
Available fields for A_BusinessPartner:
- BusinessPartner (ID)
- BusinessPartnerFullName (Name)
- BusinessPartnerCategory (1=Person, 2=Organization, 3=Group)
- BusinessPartnerGrouping
- CreationDate
- IsMarkedForArchiving
- SearchTerm1, SearchTerm2
For country-specific queries, use contains() with country names.
Return JSON with OData query parameters.
Examples:
- "Find customers in Germany" β {"$filter": "contains(BusinessPartnerFullName,'Germany') or contains(SearchTerm1,'DE')", "$top": "20"}
- "Show me organizations" β {"$filter": "BusinessPartnerCategory eq '2'", "$top": "10"}
- "Active partners only" β {"$filter": "IsMarkedForArchiving eq false", "$top": "10"}
Always include $top with a reasonable limit (max 50 for workflows).
"""
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Query: {query}"}
],
response_format={"type": "json_object"}
)
result = json.loads(response.choices[0].message.content)
if "$top" not in result:
result["$top"] = "20"
return result
except Exception as e:
# Fallback for Germany search
if "germany" in query.lower():
return {
"$filter": "contains(BusinessPartnerFullName,'Germany')",
"$top": "20"
}
return {
"$filter": f"contains(BusinessPartnerFullName,'{query}')",
"$top": "10"
}
def call_sap_api(self, entity_set: str, params: Dict[str, Any], base_url: str = None) -> Dict[str, Any]:
"""Execute SAP API call"""
url = f"{base_url or BASE_URL}/{entity_set}"
# Build query parameters
query_params = {
"$format": "json",
"$inlinecount": "allpages"
}
# Add user parameters
for key, value in params.items():
query_params[key] = value
headers = {
"Accept": "application/json",
"APIKey": SAP_API_KEY or "demo_key"
}
try:
response = requests.get(url, params=query_params, headers=headers, timeout=30)
if response.status_code == 200:
return response.json()
else:
# Return mock data for demo if API fails
return self.get_mock_data(entity_set)
except Exception as e:
# Return mock data for demo
return self.get_mock_data(entity_set)
def get_mock_data(self, entity_set: str) -> Dict[str, Any]:
"""Return mock SAP data for demo purposes"""
if entity_set == "CreditManagementAccount":
return {
"d": {
"results": [
{
"BusinessPartner": "1000000001",
"CreditLimitAmount": "50000.00",
"Currency": "EUR",
"CreditLimitValidFrom": "/Date(1640995200000)/",
"CreditLimitValidTo": "/Date(1672531200000)/",
"CreditExposureAmount": "25000.00"
},
{
"BusinessPartner": "1000000002",
"CreditLimitAmount": "75000.00",
"Currency": "EUR",
"CreditLimitValidFrom": "/Date(1640995200000)/",
"CreditLimitValidTo": "/Date(1672531200000)/",
"CreditExposureAmount": "15000.00"
}
],
"__count": "2"
}
}
else:
return {
"d": {
"results": [
{
"BusinessPartner": "1000000001",
"BusinessPartnerFullName": "Munich Manufacturing GmbH",
"BusinessPartnerCategory": "2",
"CreationDate": "/Date(1640995200000)/",
"IsMarkedForArchiving": False,
"SearchTerm1": "MUNICH"
},
{
"BusinessPartner": "1000000002",
"BusinessPartnerFullName": "Berlin Tech Solutions AG",
"BusinessPartnerCategory": "2",
"CreationDate": "/Date(1641081600000)/",
"IsMarkedForArchiving": False,
"SearchTerm1": "BERLIN"
},
{
"BusinessPartner": "1000000003",
"BusinessPartnerFullName": "Hamburg Logistics Ltd",
"BusinessPartnerCategory": "2",
"CreationDate": "/Date(1641168000000)/",
"IsMarkedForArchiving": False,
"SearchTerm1": "HAMBURG"
}
],
"__count": "3"
}
}
def execute_multi_step_workflow(self, workflow_type: str, query: str) -> str:
"""Execute multi-step workflows with progress tracking"""
if workflow_type == "credit_analysis":
return self.execute_credit_analysis_workflow(query)
else:
return f"β Unknown workflow type: {workflow_type}"
def execute_credit_analysis_workflow(self, query: str) -> str:
"""Execute the credit limit analysis workflow"""
workflow_id = f"credit_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Define workflow steps
workflow = MultiStepWorkflow(
workflow_id=workflow_id,
name="Credit Limit Analysis for German Customers",
steps=[
WorkflowStep(step_number=1, description="Search for customers in Germany", status="pending"),
WorkflowStep(step_number=2, description="Extract customer IDs", status="pending"),
WorkflowStep(step_number=3, description="Fetch credit limits for each customer", status="pending"),
WorkflowStep(step_number=4, description="Analyze and summarize findings", status="pending")
]
)
self.active_workflows[workflow_id] = workflow
try:
# Step 1: Search for customers in Germany
workflow.steps[0].status = "in_progress"
workflow.current_step = 1
# Parse the Germany search query
if "germany" not in query.lower():
query = "Find customers in Germany"
params = self.parse_search_query(query)
customers_response = self.call_sap_api("A_BusinessPartner", params)
workflow.steps[0].status = "completed"
workflow.steps[0].result = customers_response
# Step 2: Extract customer IDs
workflow.steps[1].status = "in_progress"
workflow.current_step = 2
customers = customers_response.get('d', {}).get('results', [])
if not customers:
workflow.status = "failed"
return "β No customers found in Germany"
customer_ids = [customer['BusinessPartner'] for customer in customers]
workflow.steps[1].status = "completed"
workflow.steps[1].result = customer_ids
# Step 3: Fetch credit limits
workflow.steps[2].status = "in_progress"
workflow.current_step = 3
credit_data = []
for customer_id in customer_ids:
credit_params = {
"$filter": f"BusinessPartner eq '{customer_id}'",
"$top": "1"
}
credit_response = self.call_sap_api("CreditManagementAccount", credit_params, CREDIT_API_URL)
credit_results = credit_response.get('d', {}).get('results', [])
if credit_results:
credit_info = credit_results[0]
# Match credit info with customer info
customer_info = next((c for c in customers if c['BusinessPartner'] == customer_id), {})
credit_data.append({
'customer_id': customer_id,
'customer_name': customer_info.get('BusinessPartnerFullName', 'Unknown'),
'credit_limit': credit_info.get('CreditLimitAmount', '0'),
'currency': credit_info.get('Currency', 'EUR'),
'exposure': credit_info.get('CreditExposureAmount', '0'),
'utilization': self.calculate_utilization(
credit_info.get('CreditExposureAmount', '0'),
credit_info.get('CreditLimitAmount', '0')
)
})
workflow.steps[2].status = "completed"
workflow.steps[2].result = credit_data
# Step 4: Analyze and summarize
workflow.steps[3].status = "in_progress"
workflow.current_step = 4
summary = self.generate_credit_analysis_summary(credit_data, customers)
workflow.steps[3].status = "completed"
workflow.steps[3].result = summary
workflow.status = "completed"
workflow.final_result = summary
return summary
except Exception as e:
workflow.status = "failed"
return f"β Workflow failed at step {workflow.current_step}: {str(e)}"
def calculate_utilization(self, exposure: str, limit: str) -> float:
"""Calculate credit utilization percentage"""
try:
exposure_val = float(exposure)
limit_val = float(limit)
if limit_val > 0:
return round((exposure_val / limit_val) * 100, 2)
return 0.0
except:
return 0.0
def generate_credit_analysis_summary(self, credit_data: List[Dict], customers: List[Dict]) -> str:
"""Generate comprehensive credit analysis summary"""
if not credit_data:
return "β No credit data found for German customers"
# Calculate statistics
total_customers = len(customers)
customers_with_credit = len(credit_data)
total_credit_limit = sum(float(item['credit_limit']) for item in credit_data)
total_exposure = sum(float(item['exposure']) for item in credit_data)
avg_utilization = sum(item['utilization'] for item in credit_data) / len(credit_data)
# Find high-risk customers (>80% utilization)
high_risk = [item for item in credit_data if item['utilization'] > 80]
low_risk = [item for item in credit_data if item['utilization'] < 30]
# Generate summary
summary = f"""## π Credit Limit Analysis - German Customers
### π **Workflow Execution Summary**
β
**Step 1:** Found {total_customers} German customers
β
**Step 2:** Extracted customer IDs
β
**Step 3:** Retrieved credit data for {customers_with_credit} customers
β
**Step 4:** Completed analysis and summary
### π **Key Financial Metrics**
- **Total Credit Limits:** β¬{total_credit_limit:,.2f}
- **Total Credit Exposure:** β¬{total_exposure:,.2f}
- **Average Utilization:** {avg_utilization:.1f}%
- **Overall Exposure Ratio:** {(total_exposure/total_credit_limit*100):.1f}%
### π¨ **Risk Analysis**
#### High Risk Customers (>80% utilization):
"""
if high_risk:
for customer in high_risk:
summary += f"""
**{customer['customer_name']}** (ID: {customer['customer_id']})
- Credit Limit: β¬{float(customer['credit_limit']):,.2f}
- Current Exposure: β¬{float(customer['exposure']):,.2f}
- Utilization: **{customer['utilization']}%** β οΈ
"""
else:
summary += "\nβ
No high-risk customers found\n"
summary += f"""
#### Low Risk Customers (<30% utilization):
"""
if low_risk:
for customer in low_risk[:3]: # Show top 3
summary += f"""
**{customer['customer_name']}** (ID: {customer['customer_id']})
- Credit Limit: β¬{float(customer['credit_limit']):,.2f}
- Utilization: {customer['utilization']}% β
"""
if len(low_risk) > 3:
summary += f"\n... and {len(low_risk) - 3} more low-risk customers\n"
else:
summary += "\nβ οΈ No low-risk customers found\n"
summary += f"""
### π‘ **Recommendations**
1. **Monitor High-Risk Accounts:** Review customers with >80% utilization
2. **Credit Line Reviews:** Consider adjusting limits based on utilization patterns
3. **Payment Terms:** Evaluate payment terms for high-exposure customers
4. **Regular Monitoring:** Set up alerts for utilization threshold breaches
### π **Detailed Customer List**
"""
for i, customer in enumerate(credit_data, 1):
risk_indicator = "π΄" if customer['utilization'] > 80 else "π‘" if customer['utilization'] > 50 else "π’"
summary += f"""
{i}. {risk_indicator} **{customer['customer_name']}**
- ID: {customer['customer_id']}
- Credit Limit: β¬{float(customer['credit_limit']):,.2f}
- Exposure: β¬{float(customer['exposure']):,.2f} ({customer['utilization']}%)
"""
return summary
def format_business_partner_response(self, response: Dict, original_query: str) -> str:
"""Format business partner API response into readable text"""
try:
if 'd' in response and 'results' in response['d']:
results = response['d']['results']
total_count = response['d'].get('__count', len(results))
if not results:
return f"β No business partners found for: '{original_query}'"
# Format the response
formatted_response = f"## π Business Partner Search Results\n\n"
formatted_response += f"**Query:** {original_query}\n"
formatted_response += f"**Found:** {total_count} business partner(s)\n\n"
for i, partner in enumerate(results, 1):
bp_id = partner.get('BusinessPartner', 'N/A')
bp_name = partner.get('BusinessPartnerFullName', 'N/A')
bp_category = partner.get('BusinessPartnerCategory', 'N/A')
is_archived = partner.get('IsMarkedForArchiving', False)
category_text = {
'1': 'π€ Person',
'2': 'π’ Organization',
'3': 'π Group'
}.get(bp_category, 'β Unknown')
status = 'π’ Active' if not is_archived else 'π΄ Archived'
formatted_response += f"### {i}. {bp_name}\n"
formatted_response += f"- **ID:** {bp_id}\n"
formatted_response += f"- **Type:** {category_text}\n"
formatted_response += f"- **Status:** {status}\n\n"
return formatted_response
else:
return f"β οΈ Received unexpected response format for: '{original_query}'"
except Exception as e:
return f"β Error formatting response: {str(e)}"
def search_business_partners(self, query: str) -> str:
"""Main search function for business partners"""
try:
# Parse the query
params = self.parse_search_query(query)
# Call SAP API
response = self.call_sap_api("A_BusinessPartner", params)
# Format response
return self.format_business_partner_response(response, query)
except Exception as e:
return f"β Error searching business partners: {str(e)}"
def process_user_query(self, user_query: str, history: List) -> tuple:
"""Process user query and return response with updated history"""
# Add user message to history
history.append([user_query, None])
try:
# Check for multi-step workflow requests
if any(keyword in user_query.lower() for keyword in ['credit limit', 'credit analysis', 'germany credit', 'german customers credit']):
response = self.execute_multi_step_workflow("credit_analysis", user_query)
elif any(keyword in user_query.lower() for keyword in ['search', 'find', 'show', 'list', 'get']):
response = self.search_business_partners(user_query)
else:
# Use OpenAI to understand intent and provide guidance
system_prompt = """
You are a SAP Business Partner Assistant with multi-step workflow capabilities.
Available capabilities:
1. Search business partners
2. Credit limit analysis workflows
3. Multi-step customer analysis
Guide users to:
- Use search terms for finding partners
- Ask for "credit analysis for German customers" for workflows
- Request specific business partner operations
Be helpful and explain what you can do.
"""
ai_response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_query}
]
)
response = ai_response.choices[0].message.content
# Update history with response
history[-1][1] = response
except Exception as e:
error_response = f"β Sorry, I encountered an error: {str(e)}\n\nTry asking: 'Run credit analysis for German customers'"
history[-1][1] = error_response
return "", history
# Initialize the agent
sap_agent = SAPBusinessPartnerAgent()
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="SAP Business Partner Agent with Workflows",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.agent-header {
text-align: center;
background: linear-gradient(90deg, #0070f3, #00d4ff);
color: white;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
"""
) as demo:
# Header
gr.HTML("""
<div class="agent-header">
<h1>π€ SAP Business Partner Agent</h1>
<p>Intelligent assistant with multi-step workflow capabilities</p>
</div>
""")
# Main chat interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=600,
label="Chat with SAP Business Partner Agent",
placeholder="Start by asking about business partners or request a workflow..."
)
with gr.Row():
msg = gr.Textbox(
placeholder="Try: 'Run credit analysis for German customers' or 'Find partners with name Demo'",
label="Your Message",
scale=4
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
# Example buttons
gr.Markdown("### π‘ Quick Examples:")
with gr.Row():
example1 = gr.Button("Credit Analysis Workflow", size="sm", variant="primary")
example2 = gr.Button("Find German customers", size="sm")
example3 = gr.Button("Search Demo partners", size="sm")
clear_btn = gr.Button("Clear Chat", size="sm", variant="secondary")
# Sidebar with information
with gr.Column(scale=1):
gr.Markdown("""
### π§ Agent Capabilities
**Multi-Step Workflows:**
- π¦ Credit limit analysis
- π Risk assessment
- π Sequential API calls
**Search & Retrieve:**
- Find business partners
- Filter by criteria
- Location-based search
**Partner Types:**
- π€ Persons
- π’ Organizations
- π Groups
### π Advanced Features
- **Workflow Tracking:** Step-by-step progress
- **Error Handling:** Graceful failure recovery
- **Data Integration:** Multiple SAP APIs
- **Smart Analysis:** AI-powered insights
### π Workflow Examples
- "Run credit analysis for German customers"
- "Analyze credit limits for suppliers"
- "Find high-risk customers"
""")
# Event handlers
msg.submit(
sap_agent.process_user_query,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
submit_btn.click(
sap_agent.process_user_query,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Example button events
example1.click(lambda: "Run credit analysis for German customers", outputs=msg)
example2.click(lambda: "Find customers in Germany", outputs=msg)
example3.click(lambda: "Find partners with name Demo", outputs=msg)
clear_btn.click(lambda: [], outputs=chatbot)
# Footer
gr.Markdown("""
---
**SAP Business Partner Agent with Multi-Step Workflows** | Powered by OpenAI & SAP APIs | Built for Advanced Agentic AI Learning
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|