File size: 19,540 Bytes
da1a021
 
 
 
 
d207e49
 
da1a021
 
d207e49
 
da1a021
 
d207e49
1b78660
d207e49
da1a021
 
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b78660
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1a021
 
d207e49
 
da1a021
d207e49
 
 
 
 
 
 
 
 
da1a021
d207e49
 
 
 
1b78660
d207e49
c1df0d9
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edda512
d207e49
 
 
 
 
 
 
 
 
 
 
 
6c96152
 
 
 
 
 
 
 
 
 
 
d207e49
 
 
 
93dde6b
d207e49
93dde6b
 
d207e49
93dde6b
d207e49
edda512
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93dde6b
d207e49
77f67f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d207e49
 
93dde6b
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
77f67f6
d207e49
 
 
 
 
 
 
 
77f67f6
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
df5ff94
 
d207e49
 
 
 
77f67f6
 
 
d207e49
 
77f67f6
d207e49
 
 
 
 
 
 
77f67f6
d207e49
77f67f6
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
77f67f6
d207e49
 
 
 
 
 
 
77f67f6
d207e49
 
 
 
 
 
 
93dde6b
d207e49
 
 
da1a021
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c048102
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1a021
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
77f67f6
 
 
 
 
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1a021
d207e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1a021
d207e49
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import gradio as gr
import openai
import requests
import json
from typing import Dict, Any, List, Tuple
from datetime import datetime
import os

class MCPClient:
    """MCP Client for communicating with the MCP server"""
    
    def __init__(self, server_url: str):
        self.server_url = server_url.rstrip('/')
    
    def call_tool_sync(self, tool_name: str, arguments: Dict[str, Any] = None) -> Dict[str, Any]:
        """Synchronous tool call using requests instead of aiohttp"""
        if arguments is None:
            arguments = {}
        
        mcp_request = {
            "jsonrpc": "2.0",
            "id": 1,
            "method": "tools/call",
            "params": {
                "name": tool_name,
                "arguments": arguments
            }
        }
        
        try:
            response = requests.post(
                f"{self.server_url}/mcp",
                json=mcp_request,
                headers={
                    "Content-Type": "application/json",
                    "ngrok-skip-browser-warning": "true"
                },
                timeout=30
            )
            
            if response.status_code == 200:
                result = response.json()
                if "result" in result and "content" in result["result"]:
                    content = result["result"]["content"][0]["text"]
                    return json.loads(content)
                return result
            else:
                return {
                    "success": False,
                    "error": f"HTTP {response.status_code}: {response.text}"
                }
        except Exception as e:
            return {
                "success": False,
                "error": f"Connection error: {str(e)}"
            }
    
    def list_tools_sync(self) -> List[Dict[str, Any]]:
        """Synchronous tool listing using requests"""
        mcp_request = {
            "jsonrpc": "2.0",
            "id": 1,
            "method": "tools/list"
        }
        
        try:
            response = requests.post(
                f"{self.server_url}/mcp",
                json=mcp_request,
                headers={
                    "Content-Type": "application/json",
                    "ngrok-skip-browser-warning": "true"
                },
                timeout=30
            )
            
            if response.status_code == 200:
                result = response.json()
                return result.get("result", {}).get("tools", [])
            return []
        except Exception as e:
            print(f"Error listing tools: {str(e)}")
            return []

class AIAssistant:
    """AI Assistant with MCP integration"""
    
    def __init__(self, openai_api_key: str, mcp_client: MCPClient):
        try:
            self.openai_client = openai.OpenAI(
                api_key=openai_api_key,
                timeout=30.0
            )
        except Exception as e:
            # Fallback for older OpenAI versions
            openai.api_key = openai_api_key
            self.openai_client = openai
        self.mcp_client = mcp_client
        self.available_tools = []
    
    def initialize(self):
        """Initialize the assistant by fetching available tools"""
        self.available_tools = self.mcp_client.list_tools_sync()
    
    def get_system_prompt(self) -> str:
        """Generate system prompt with available tools"""
        tools_description = "\n".join([
            f"- {tool['name']}: {tool['description']}"
            for tool in self.available_tools
        ])
        
        return f"""You are an AI assistant with access to SAP business systems and news data through specialized tools. 

Available tools:
{tools_description}

When a user asks for information that can be retrieved using these tools, you should:
1. Identify which tool(s) would be helpful
2. Call the appropriate tool(s) with the right parameters
3. Wait for the results before providing your final response

For SAP-related queries (purchase orders, requisitions), use the SAP tools.
For news-related queries, use the news tools.

To call a tool, use this exact format:
CALL_TOOL: tool_name
or 
CALL_TOOL: tool_name(parameter1=value1, parameter2=value2)

Examples:
- For "show me purchase orders": CALL_TOOL: get_purchase_orders
- For "get 20 purchase orders": CALL_TOOL: get_purchase_orders(top=20)
- For "latest tech news": CALL_TOOL: get_news_headlines(category=technology)
- For "get news from BBC": CALL_TOOL: get_news_by_source(source_id=bbc-news)
- For "get news from CNN": CALL_TOOL: get_news_by_source(source_id=cnn)
- For "get news from Reuters": CALL_TOOL: get_news_by_source(source_id=reuters)

IMPORTANT: For news by source queries, always include the source_id parameter:
- BBC: source_id=bbc-news
- CNN: source_id=cnn  
- Reuters: source_id=reuters
- Associated Press: source_id=associated-press
- The Guardian: source_id=the-guardian
- Washington Post: source_id=the-washington-post

After calling a tool, I will provide you with the results to interpret for the user.
"""
    
    def extract_tool_calls(self, response: str) -> List[Dict[str, Any]]:
        """Extract tool calls from AI response"""
        tool_calls = []
        lines = response.split('\n')
        
        for line in lines:
            line = line.strip()
            if line.startswith('CALL_TOOL:'):
                try:
                    # Remove 'CALL_TOOL:' prefix and clean up
                    tool_part = line[10:].strip()
                    
                    # Handle cases with or without parentheses
                    if '(' in tool_part and ')' in tool_part:
                        tool_name = tool_part.split('(')[0].strip()
                        params_str = tool_part.split('(')[1].split(')')[0]
                        
                        params = {}
                        if params_str.strip():
                            for param in params_str.split(','):
                                if '=' in param:
                                    key, value = param.split('=', 1)
                                    key = key.strip()
                                    value = value.strip().strip('"\'')
                                    try:
                                        if value.isdigit():
                                            value = int(value)
                                        elif value.lower() in ['true', 'false']:
                                            value = value.lower() == 'true'
                                    except:
                                        pass
                                    params[key] = value
                        
                        tool_calls.append({
                            'name': tool_name,
                            'arguments': params
                        })
                    else:
                        # Simple tool call without parameters
                        tool_name = tool_part.strip()
                        tool_calls.append({
                            'name': tool_name,
                            'arguments': {}
                        })
                        
                except Exception as e:
                    print(f"Error parsing tool call '{line}': {e}")
                    continue
        
        return tool_calls
    
    def truncate_tool_result(self, result: Dict[str, Any], max_chars: int = 2000) -> Dict[str, Any]:
        """Truncate tool results to prevent context overflow"""
        if not isinstance(result, dict):
            return result
            
        result_copy = result.copy()
        result_str = json.dumps(result_copy, indent=2)
        
        if len(result_str) > max_chars:
            # Try to truncate data arrays/lists first
            for key, value in result_copy.items():
                if isinstance(value, list) and len(value) > 3:
                    result_copy[key] = value[:3] + [f"... ({len(value) - 3} more items truncated)"]
                elif isinstance(value, str) and len(value) > 500:
                    result_copy[key] = value[:500] + "... (truncated)"
            
            # If still too long, add truncation notice
            result_str = json.dumps(result_copy, indent=2)
            if len(result_str) > max_chars:
                result_copy = {
                    "success": result.get("success", False),
                    "truncated": True,
                    "message": f"Result truncated due to size. Original had {len(result_str)} characters.",
                    "sample_data": str(result)[:1000] + "..." if len(str(result)) > 1000 else str(result)
                }
        
        return result_copy

    def process_message(self, user_message: str) -> Tuple[str, str]:
        """Process user message and handle tool calls"""
        tool_info = ""
        
        try:
            messages = [
                {"role": "system", "content": self.get_system_prompt()},
                {"role": "user", "content": user_message}
            ]
            
            # Check if we have a proper OpenAI client
            if hasattr(self.openai_client, 'chat'):
                response = self.openai_client.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=800  # Reduced to leave more room for context
                )
                ai_response = response.choices[0].message.content
            else:
                # Fallback for older API
                response = self.openai_client.ChatCompletion.create(
                    model="gpt-3.5-turbo",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=800
                )
                ai_response = response.choices[0].message.content
            tool_calls = self.extract_tool_calls(ai_response)
            
            # Debug information
            print(f"AI Response: {ai_response}")
            print(f"Extracted tool calls: {tool_calls}")
            
            if tool_calls:
                tool_results = []
                
                for tool_call in tool_calls:
                    tool_info += f"πŸ”§ Calling: {tool_call['name']}\n"
                    
                    # FIXED: Use call_tool_sync instead of await call_tool
                    result = self.mcp_client.call_tool_sync(
                        tool_call['name'], 
                        tool_call['arguments']
                    )
                    
                    # Truncate large results to prevent context overflow
                    truncated_result = self.truncate_tool_result(result)
                    
                    tool_results.append({
                        'tool': tool_call['name'],
                        'result': truncated_result
                    })
                    
                    if result.get('success'):
                        tool_info += f"βœ… {tool_call['name']} completed\n"
                    else:
                        tool_info += f"❌ {tool_call['name']} failed: {result.get('error', 'Unknown error')}\n"
                
                # Create concise tool results summary
                tool_results_text = "\n\n".join([
                    f"Tool: {tr['tool']}\nResult: {json.dumps(tr['result'], indent=2)[:1500]}{'...(truncated)' if len(json.dumps(tr['result'], indent=2)) > 1500 else ''}"
                    for tr in tool_results
                ])
                
                final_messages = messages + [
                    {"role": "assistant", "content": ai_response},
                    {"role": "user", "content": f"Here are the tool results:\n\n{tool_results_text}\n\nPlease interpret these results and provide a helpful response to the user."}
                ]
                
                # Get final response with tool results
                if hasattr(self.openai_client, 'chat'):
                    final_response = self.openai_client.chat.completions.create(
                        model="gpt-3.5-turbo",
                        messages=final_messages,
                        temperature=0.7,
                        max_tokens=800  # Reduced max tokens
                    )
                    return final_response.choices[0].message.content, tool_info
                else:
                    final_response = self.openai_client.ChatCompletion.create(
                        model="gpt-3.5-turbo",
                        messages=final_messages,
                        temperature=0.7,
                        max_tokens=800
                    )
                    return final_response.choices[0].message.content, tool_info
            else:
                return ai_response, ""
                
        except Exception as e:
            return f"❌ Error processing your request: {str(e)}", ""

# Global variables
assistant = None
mcp_client = None

def test_connection(mcp_url):
    """Test MCP server connection"""
    if not mcp_url or mcp_url == "https://your-ngrok-url.ngrok.io":
        return "❌ Please enter a valid MCP server URL"
    
    try:
        # Test health endpoint
        response = requests.get(f"{mcp_url.rstrip('/')}/health", timeout=10)
        if response.status_code == 200:
            data = response.json()
            
            # Test MCP tools list
            mcp_request = {
                "jsonrpc": "2.0",
                "id": 1,
                "method": "tools/list"
            }
            
            mcp_response = requests.post(
                f"{mcp_url.rstrip('/')}/mcp",
                json=mcp_request,
                headers={
                    "Content-Type": "application/json",
                    "ngrok-skip-browser-warning": "true"
                },
                timeout=10
            )
            
            if mcp_response.status_code == 200:
                mcp_data = mcp_response.json()
                tools = mcp_data.get("result", {}).get("tools", [])
                tool_names = [tool.get("name", "Unknown") for tool in tools]
                
                return f"βœ… Connected successfully!\nHealth Status: {data.get('status', 'Unknown')}\nMCP Tools: {len(tools)}\nAvailable: {', '.join(tool_names)}"
            else:
                return f"βœ… Health OK, but MCP endpoint failed: HTTP {mcp_response.status_code}"
        else:
            return f"❌ Connection failed: HTTP {response.status_code}"
    except Exception as e:
        return f"❌ Connection error: {str(e)}"

def initialize_assistant(openai_key, mcp_url):
    """Initialize the AI assistant"""
    global assistant, mcp_client
    
    if not openai_key:
        return "❌ Please enter your OpenAI API key"
    
    if not mcp_url or mcp_url == "https://your-ngrok-url.ngrok.io":
        return "❌ Please enter a valid MCP server URL"
    
    try:
        mcp_client = MCPClient(mcp_url)
        assistant = AIAssistant(openai_key, mcp_client)
        assistant.initialize()
        return f"βœ… AI Assistant initialized with {len(assistant.available_tools)} tools available"
    except Exception as e:
        return f"❌ Failed to initialize: {str(e)}"

def chat_interface(message, history, openai_key, mcp_url):
    """Main chat interface"""
    global assistant
    
    if not assistant:
        init_result = initialize_assistant(openai_key, mcp_url)
        if "❌" in init_result:
            history.append([message, init_result])
            return history, ""
    
    try:
        print(f"Calling process_message with: {message}")
        
        # Limit conversation history to prevent context overflow
        # Keep only the last 5 exchanges (10 messages total)
        if len(history) > 10:
            history = history[-10:]
        
        # Make sure we call the synchronous method
        result = assistant.process_message(message)
        print(f"process_message returned: {type(result)} - {result}")
        
        # Check if result is a tuple (response, tool_info)
        if isinstance(result, tuple) and len(result) == 2:
            response, tool_info = result
            print(f"Unpacked: response={response}, tool_info={tool_info}")
        else:
            response = str(result)
            tool_info = ""
            print(f"Single result: {response}")
        
        # Format response with tool info if available
        if tool_info:
            full_response = f"**Tool Execution:**\n{tool_info}\n\n**Response:**\n{response}"
        else:
            full_response = response
            
        history.append([message, full_response])
        return history, ""
    except Exception as e:
        import traceback
        error_response = f"❌ Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(f"Error in chat_interface: {error_response}")
        history.append([message, error_response])
        return history, ""

# Create Gradio interface
with gr.Blocks(title="AI Assistant with SAP & News Integration", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ€– AI Assistant with SAP & News Integration")
    gr.Markdown("Chat with an AI that can access SAP business data and news through natural language queries.")
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=500,
                show_label=False,
                container=True,
                bubble_full_width=False
            )
            
            msg = gr.Textbox(
                placeholder="Ask me about SAP data, news, or anything else...",
                show_label=False,
                container=False
            )
            
            with gr.Row():
                submit_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")
        
        with gr.Column(scale=1):
            gr.Markdown("### βš™οΈ Configuration")
            
            openai_key = gr.Textbox(
                label="OpenAI API Key",
                type="password",
                placeholder="sk-..."
            )
            
            mcp_url = gr.Textbox(
                label="MCP Server URL",
                value="https://your-ngrok-url.ngrok.io",
                placeholder="https://abc123.ngrok.io"
            )
            
            test_btn = gr.Button("Test Connection", variant="secondary")
            connection_status = gr.Textbox(label="Connection Status", interactive=False)
            
            gr.Markdown("### πŸ“‹ Example Queries")
            gr.Markdown("""
            - "Show me recent purchase orders"
            - "Get purchase requisitions"
            - "What's the latest tech news?"
            - "Get news from BBC"
            - "Show me business news from the US"
            """)
    
    # Event handlers
    def respond(message, history, openai_key, mcp_url):
        return chat_interface(message, history, openai_key, mcp_url)
    
    submit_btn.click(
        respond,
        [msg, chatbot, openai_key, mcp_url],
        [chatbot, msg]
    )
    
    msg.submit(
        respond,
        [msg, chatbot, openai_key, mcp_url],
        [chatbot, msg]
    )
    
    clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
    
    test_btn.click(
        test_connection,
        [mcp_url],
        [connection_status]
    )

if __name__ == "__main__":
    demo.launch()