File size: 11,834 Bytes
7f63e6d a0aabd2 f0248fd a0aabd2 20a11e3 a0aabd2 f0248fd a0aabd2 20a11e3 a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 a0aabd2 f0248fd 20a11e3 a0aabd2 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 a0aabd2 20a11e3 a0aabd2 f0248fd a0aabd2 f0248fd a0aabd2 f0248fd a0aabd2 20a11e3 a0aabd2 20a11e3 f0248fd a0aabd2 20a11e3 a0aabd2 f0248fd 20a11e3 f0248fd a0aabd2 20a11e3 a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 a0aabd2 20a11e3 f0248fd 20a11e3 f0248fd a0aabd2 f0248fd a0aabd2 20a11e3 a0aabd2 20a11e3 a0aabd2 20a11e3 a0aabd2 20a11e3 a0aabd2 20a11e3 a0aabd2 20a11e3 a0aabd2 20a11e3 f0248fd 20a11e3 a0aabd2 20a11e3 a0aabd2 f0248fd a0aabd2 20a11e3 f0248fd a0aabd2 f0248fd a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd a0aabd2 f0248fd a0aabd2 20a11e3 f0248fd a0aabd2 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd 20a11e3 f0248fd a0aabd2 20a11e3 f0248fd 20a11e3 f0248fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
# Page config
st.set_page_config(
page_title="Supply Chain Intelligence",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Clean, professional CSS styling
st.markdown("""
<style>
/* Import modern font */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
/* Global styling */
.stApp {
font-family: 'Inter', sans-serif;
background-color: #f8fafc;
}
/* Main container */
.main-container {
background: white;
border-radius: 12px;
padding: 2rem;
margin: 1rem 0;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
border: 1px solid #e2e8f0;
}
/* Clean header */
.modern-header {
background: #1e293b;
color: white;
padding: 2rem;
border-radius: 12px;
margin-bottom: 2rem;
border-left: 4px solid #3b82f6;
}
.header-title {
font-size: 2rem;
font-weight: 600;
margin-bottom: 0.5rem;
color: white;
}
.header-subtitle {
font-size: 1rem;
font-weight: 400;
color: #94a3b8;
}
/* Clean metric cards */
.metric-card {
background: white;
padding: 1.5rem;
border-radius: 12px;
border: 1px solid #e2e8f0;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
margin-bottom: 1rem;
transition: all 0.2s ease;
}
.metric-card:hover {
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);
border-color: #cbd5e1;
}
.metric-number {
font-size: 2.5rem;
font-weight: 700;
color: #1e293b;
margin-bottom: 0.5rem;
}
.metric-label {
color: #64748b;
font-size: 0.875rem;
font-weight: 500;
text-transform: uppercase;
letter-spacing: 0.05em;
margin-bottom: 0.5rem;
}
.metric-change {
font-size: 0.875rem;
font-weight: 600;
padding: 0.25rem 0.75rem;
border-radius: 6px;
display: inline-block;
}
.metric-positive {
background-color: #dcfce7;
color: #166534;
}
.metric-negative {
background-color: #fef2f2;
color: #dc2626;
}
.metric-neutral {
background-color: #f1f5f9;
color: #475569;
}
/* Clean sidebar */
.sidebar-content {
background: white;
color: #1e293b;
border-radius: 12px;
padding: 1.5rem;
margin-bottom: 1rem;
border: 1px solid #e2e8f0;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
/* Filter section */
.filter-container {
background: white;
padding: 1.5rem;
border-radius: 12px;
margin-bottom: 2rem;
border: 1px solid #e2e8f0;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
/* Section headers */
.section-header {
font-size: 1.25rem;
font-weight: 600;
color: #1e293b;
margin-bottom: 1.5rem;
padding-bottom: 0.75rem;
border-bottom: 2px solid #e2e8f0;
}
/* Status indicators */
.status-indicator {
display: inline-block;
width: 8px;
height: 8px;
border-radius: 50%;
margin-right: 8px;
}
.status-good { background-color: #22c55e; }
.status-warning { background-color: #f59e0b; }
.status-critical { background-color: #ef4444; }
/* Clean table styling */
.dataframe table {
border-collapse: collapse;
margin: 0;
font-size: 0.875rem;
width: 100%;
background: white;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
.dataframe th {
background-color: #f8fafc;
color: #374151;
font-weight: 600;
padding: 12px;
text-align: left;
border-bottom: 1px solid #e5e7eb;
}
.dataframe td {
padding: 12px;
border-bottom: 1px solid #f3f4f6;
}
.dataframe tr:hover {
background-color: #f9fafb;
}
/* Remove default streamlit styling */
.stSelectbox > div > div {
background-color: white;
border: 1px solid #d1d5db;
border-radius: 6px;
}
.stSelectbox > div > div:focus-within {
border-color: #3b82f6;
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1);
}
</style>
""", unsafe_allow_html=True)
# Sample data functions (same as before)
@st.cache_data
def get_material_data():
return pd.DataFrame({
'Material Group': ['Engine Components', 'Hydraulic Systems', 'Interior & Seating',
'Battery Systems', 'Suspension Parts', 'Safety Components', 'Semiconductors',
'Smart Sensors', 'Brake Systems', 'Shock Absorbers'],
'Current Rate': [72, 68, 65, 73, 75, 72, 78, 77, 80, 82],
'Target Rate': [75, 70, 70, 75, 78, 75, 80, 80, 82, 85],
'Trend': ['+2.1%', '+1.8%', '+0.9%', '+2.4%', '+1.2%', '+1.8%', '+2.1%', '+1.9%', '+1.1%', '+1.2%'],
'Risk Level': ['Medium', 'High', 'High', 'Low', 'Low', 'Medium', 'Low', 'Low', 'Low', 'Low'],
'Last Updated': ['2 hrs ago', '1 hr ago', '3 hrs ago', '1 hr ago', '2 hrs ago', '1 hr ago', '30 min ago', '45 min ago', '1 hr ago', '2 hrs ago']
})
@st.cache_data
def get_enhanced_metrics():
return {
'fulfillment': 86,
'mom_change': 2.3,
'material_groups': 147,
'skus': 12847,
'material_groups_at_risk': 18,
'risk_mom_change': -1.8,
'skus_at_risk': 23,
'sku_risk_mom_change': -2.1,
'active_suppliers': 342,
'on_time_delivery': 94.2
}
# Clean, professional header
st.markdown("""
<div class="modern-header">
<div class="header-title">Supply Chain Intelligence Hub</div>
<div class="header-subtitle">Real-time Supply Chain Resilience Dashboard β’ Control Tower Analytics</div>
</div>
""", unsafe_allow_html=True)
# Professional sidebar
with st.sidebar:
st.markdown("""
<div class="sidebar-content">
<h3 style="margin-top: 0; color: #1e293b;">Navigation</h3>
<p style="color: #64748b; font-size: 0.875rem;">Select your workspace</p>
</div>
""", unsafe_allow_html=True)
nav_options = [
"Dashboard Home",
"Supply Chain Resilience",
"Control Tower",
"Material Groups",
"Supplier Analytics",
"Demand Planning",
"Insights & Trends",
"Real-time Alerts",
"Reports Center"
]
selected_nav = st.selectbox("", nav_options, index=1)
# Clean alerts section
st.markdown("---")
st.markdown("**System Status**")
st.error("β οΈ 3 suppliers need attention")
st.warning("π 12 SKUs below safety stock")
st.success("β
94% on-time delivery")
# Clean filters section
st.markdown("""
<div class="filter-container">
<div class="section-header">Filters & Controls</div>
</div>
""", unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
col5, col6, col7, col8 = st.columns(4)
with col1:
plant_location = st.selectbox("Plant Location", ["Chennai Hub", "Mumbai Center", "Delhi North", "Bangalore Tech"], index=0)
with col2:
material_group = st.selectbox("Material Category", ["All Categories", "Critical Components", "Standard Parts"], index=0)
with col3:
time_period = st.selectbox("Time Period", ["Current Quarter", "FY2025", "Last 6 Months"], index=0)
with col4:
supplier_tier = st.selectbox("Supplier Tier", ["All Tiers", "Tier 1 Strategic", "Tier 2 Operational"], index=0)
with col5:
risk_level = st.selectbox("Risk Level", ["All Levels", "High Risk Only", "Medium Risk", "Low Risk"], index=0)
with col6:
performance = st.selectbox("Performance", ["All Performance", "Above Target", "Below Target"], index=0)
with col7:
geography = st.selectbox("Geography", ["Global View", "Asia Pacific", "Americas", "Europe"], index=0)
with col8:
update_freq = st.selectbox("Update Frequency", ["Real-time", "Hourly", "Daily"], index=0)
# Get data
material_df = get_material_data()
metrics = get_enhanced_metrics()
# Clean metrics section
st.markdown('<div class="section-header">Key Performance Indicators</div>', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown(f"""
<div class="metric-card">
<div class="metric-number">{metrics['fulfillment']}%</div>
<div class="metric-label">Overall Fulfillment</div>
<div class="metric-change metric-positive">β +{metrics['mom_change']}% MoM</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="metric-card">
<div class="metric-number">{metrics['on_time_delivery']}%</div>
<div class="metric-label">On-Time Delivery</div>
<div class="metric-change metric-positive">β +1.2% WoW</div>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class="metric-card">
<div class="metric-number">{metrics['material_groups_at_risk']}%</div>
<div class="metric-label">At-Risk Categories</div>
<div class="metric-change metric-positive">β {metrics['risk_mom_change']}% MoM</div>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class="metric-card">
<div class="metric-number">{metrics['active_suppliers']:,}</div>
<div class="metric-label">Active Suppliers</div>
<div class="metric-change metric-neutral">+15 new</div>
</div>
""", unsafe_allow_html=True)
# Clean data table
st.markdown('<div class="section-header">Material Group Performance</div>', unsafe_allow_html=True)
# Display clean table
st.dataframe(material_df, use_container_width=True, hide_index=True)
# Professional charts
st.markdown('<div class="section-header">Performance Analytics</div>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
# Clean bar chart
fig1 = px.bar(
material_df,
x='Material Group',
y=['Current Rate', 'Target Rate'],
title="Fulfillment Rates: Current vs Target",
color_discrete_sequence=['#3b82f6', '#64748b']
)
fig1.update_layout(
plot_bgcolor='white',
paper_bgcolor='white',
font_family="Inter",
title_font_size=14,
title_font_color="#1e293b",
xaxis_tickangle=-45,
height=400,
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
st.plotly_chart(fig1, use_container_width=True)
with col2:
# Clean pie chart
risk_counts = material_df['Risk Level'].value_counts()
fig2 = px.pie(
values=risk_counts.values,
names=risk_counts.index,
title="Risk Distribution",
color_discrete_sequence=['#22c55e', '#f59e0b', '#ef4444']
)
fig2.update_layout(
plot_bgcolor='white',
paper_bgcolor='white',
font_family="Inter",
title_font_size=14,
title_font_color="#1e293b",
height=400
)
st.plotly_chart(fig2, use_container_width=True)
# Clean footer
st.markdown("""
<div style="text-align: center; padding: 1.5rem; color: #64748b; border-top: 1px solid #e2e8f0; margin-top: 2rem; font-size: 0.875rem;">
Dashboard last updated: {timestamp} β’ Auto-refresh: Every 15 minutes β’ Data accuracy: 99.7%
</div>
""".format(timestamp=datetime.now().strftime("%B %d, %Y at %I:%M %p")), unsafe_allow_html=True)
|