|
import sys |
|
sys.path.append("../") |
|
sys.path.append("../../") |
|
|
|
import os |
|
import json |
|
import time |
|
import psutil |
|
import ffmpeg |
|
import imageio |
|
import argparse |
|
from PIL import Image |
|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
|
|
from tools.painter import mask_painter |
|
from tools.interact_tools import SamControler |
|
from tools.misc import get_device |
|
from tools.download_util import load_file_from_url |
|
|
|
from matanyone_wrapper import matanyone |
|
from matanyone.utils.get_default_model import get_matanyone_model |
|
from matanyone.inference.inference_core import InferenceCore |
|
|
|
def parse_augment(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default=None) |
|
parser.add_argument('--sam_model_type', type=str, default="vit_h") |
|
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications") |
|
parser.add_argument('--mask_save', default=False) |
|
args = parser.parse_args() |
|
|
|
if not args.device: |
|
args.device = str(get_device()) |
|
|
|
return args |
|
|
|
|
|
class MaskGenerator(): |
|
def __init__(self, sam_checkpoint, args): |
|
self.args = args |
|
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device) |
|
|
|
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True): |
|
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask) |
|
return mask, logit, painted_image |
|
|
|
|
|
def get_prompt(click_state, click_input): |
|
inputs = json.loads(click_input) |
|
points = click_state[0] |
|
labels = click_state[1] |
|
for input in inputs: |
|
points.append(input[:2]) |
|
labels.append(input[2]) |
|
click_state[0] = points |
|
click_state[1] = labels |
|
prompt = { |
|
"prompt_type":["click"], |
|
"input_point":click_state[0], |
|
"input_label":click_state[1], |
|
"multimask_output":"True", |
|
} |
|
return prompt |
|
|
|
def get_frames_from_image(image_input, image_state): |
|
""" |
|
Args: |
|
video_path:str |
|
timestamp:float64 |
|
Return |
|
[[0:nearest_frame], [nearest_frame:], nearest_frame] |
|
""" |
|
|
|
user_name = time.time() |
|
frames = [image_input] * 2 |
|
image_size = (frames[0].shape[0],frames[0].shape[1]) |
|
|
|
image_state = { |
|
"user_name": user_name, |
|
"image_name": "output.png", |
|
"origin_images": frames, |
|
"painted_images": frames.copy(), |
|
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), |
|
"logits": [None]*len(frames), |
|
"select_frame_number": 0, |
|
"fps": None |
|
} |
|
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size) |
|
model.samcontroler.sam_controler.reset_image() |
|
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0]) |
|
return image_state, image_info, image_state["origin_images"][0], \ |
|
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ |
|
gr.update(visible=True), gr.update(visible=True), \ |
|
gr.update(visible=True), gr.update(visible=True),\ |
|
gr.update(visible=True), gr.update(visible=True), \ |
|
gr.update(visible=True), gr.update(visible=False), \ |
|
gr.update(visible=False), gr.update(visible=True), \ |
|
gr.update(visible=True) |
|
|
|
|
|
def get_frames_from_video(video_input, video_state): |
|
""" |
|
Args: |
|
video_path:str |
|
timestamp:float64 |
|
Return |
|
[[0:nearest_frame], [nearest_frame:], nearest_frame] |
|
""" |
|
video_path = video_input |
|
frames = [] |
|
user_name = time.time() |
|
|
|
|
|
try: |
|
audio_path = video_input.replace(".mp4", "_audio.wav") |
|
ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True) |
|
except Exception as e: |
|
print(f"Audio extraction error: {str(e)}") |
|
audio_path = "" |
|
|
|
|
|
|
|
try: |
|
cap = cv2.VideoCapture(video_path) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if ret == True: |
|
current_memory_usage = psutil.virtual_memory().percent |
|
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
if current_memory_usage > 90: |
|
break |
|
else: |
|
break |
|
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: |
|
print("read_frame_source:{} error. {}\n".format(video_path, str(e))) |
|
image_size = (frames[0].shape[0],frames[0].shape[1]) |
|
|
|
|
|
video_state = { |
|
"user_name": user_name, |
|
"video_name": os.path.split(video_path)[-1], |
|
"origin_images": frames, |
|
"painted_images": frames.copy(), |
|
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), |
|
"logits": [None]*len(frames), |
|
"select_frame_number": 0, |
|
"fps": fps, |
|
"audio": audio_path |
|
} |
|
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size) |
|
model.samcontroler.sam_controler.reset_image() |
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) |
|
return video_state, video_info, video_state["origin_images"][0], \ |
|
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ |
|
gr.update(visible=True), gr.update(visible=True), \ |
|
gr.update(visible=True), gr.update(visible=True),\ |
|
gr.update(visible=True), gr.update(visible=True), \ |
|
gr.update(visible=True), gr.update(visible=False), \ |
|
gr.update(visible=False), gr.update(visible=True), \ |
|
gr.update(visible=True) |
|
|
|
|
|
def select_video_template(image_selection_slider, video_state, interactive_state): |
|
|
|
image_selection_slider -= 1 |
|
video_state["select_frame_number"] = image_selection_slider |
|
|
|
|
|
model.samcontroler.sam_controler.reset_image() |
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) |
|
|
|
return video_state["painted_images"][image_selection_slider], video_state, interactive_state |
|
|
|
def select_image_template(image_selection_slider, video_state, interactive_state): |
|
|
|
image_selection_slider = 0 |
|
video_state["select_frame_number"] = image_selection_slider |
|
|
|
|
|
model.samcontroler.sam_controler.reset_image() |
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) |
|
|
|
return video_state["painted_images"][image_selection_slider], video_state, interactive_state |
|
|
|
|
|
def get_end_number(track_pause_number_slider, video_state, interactive_state): |
|
interactive_state["track_end_number"] = track_pause_number_slider |
|
|
|
return video_state["painted_images"][track_pause_number_slider],interactive_state |
|
|
|
|
|
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): |
|
""" |
|
Args: |
|
template_frame: PIL.Image |
|
point_prompt: flag for positive or negative button click |
|
click_state: [[points], [labels]] |
|
""" |
|
if point_prompt == "Positive": |
|
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) |
|
interactive_state["positive_click_times"] += 1 |
|
else: |
|
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) |
|
interactive_state["negative_click_times"] += 1 |
|
|
|
|
|
model.samcontroler.sam_controler.reset_image() |
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]]) |
|
prompt = get_prompt(click_state=click_state, click_input=coordinate) |
|
|
|
mask, logit, painted_image = model.first_frame_click( |
|
image=video_state["origin_images"][video_state["select_frame_number"]], |
|
points=np.array(prompt["input_point"]), |
|
labels=np.array(prompt["input_label"]), |
|
multimask=prompt["multimask_output"], |
|
) |
|
video_state["masks"][video_state["select_frame_number"]] = mask |
|
video_state["logits"][video_state["select_frame_number"]] = logit |
|
video_state["painted_images"][video_state["select_frame_number"]] = painted_image |
|
|
|
return painted_image, video_state, interactive_state |
|
|
|
def add_multi_mask(video_state, interactive_state, mask_dropdown): |
|
mask = video_state["masks"][video_state["select_frame_number"]] |
|
interactive_state["multi_mask"]["masks"].append(mask) |
|
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) |
|
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) |
|
select_frame = show_mask(video_state, interactive_state, mask_dropdown) |
|
|
|
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]] |
|
|
|
def clear_click(video_state, click_state): |
|
click_state = [[],[]] |
|
template_frame = video_state["origin_images"][video_state["select_frame_number"]] |
|
return template_frame, click_state |
|
|
|
def remove_multi_mask(interactive_state, mask_dropdown): |
|
interactive_state["multi_mask"]["mask_names"]= [] |
|
interactive_state["multi_mask"]["masks"] = [] |
|
|
|
return interactive_state, gr.update(choices=[],value=[]) |
|
|
|
def show_mask(video_state, interactive_state, mask_dropdown): |
|
mask_dropdown.sort() |
|
if video_state["origin_images"]: |
|
select_frame = video_state["origin_images"][video_state["select_frame_number"]] |
|
for i in range(len(mask_dropdown)): |
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 |
|
mask = interactive_state["multi_mask"]["masks"][mask_number] |
|
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) |
|
|
|
return select_frame |
|
|
|
|
|
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter): |
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) |
|
if interactive_state["track_end_number"]: |
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] |
|
else: |
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] |
|
|
|
if interactive_state["multi_mask"]["masks"]: |
|
if len(mask_dropdown) == 0: |
|
mask_dropdown = ["mask_001"] |
|
mask_dropdown.sort() |
|
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) |
|
for i in range(1,len(mask_dropdown)): |
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 |
|
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) |
|
video_state["masks"][video_state["select_frame_number"]]= template_mask |
|
else: |
|
template_mask = video_state["masks"][video_state["select_frame_number"]] |
|
|
|
|
|
if len(np.unique(template_mask))==1: |
|
template_mask[0][0]=1 |
|
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter) |
|
foreground_output = Image.fromarray(foreground[-1]) |
|
alpha_output = Image.fromarray(alpha[-1][:,:,0]) |
|
return foreground_output, alpha_output |
|
|
|
|
|
def video_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size): |
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) |
|
if interactive_state["track_end_number"]: |
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] |
|
else: |
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] |
|
|
|
if interactive_state["multi_mask"]["masks"]: |
|
if len(mask_dropdown) == 0: |
|
mask_dropdown = ["mask_001"] |
|
mask_dropdown.sort() |
|
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) |
|
for i in range(1,len(mask_dropdown)): |
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 |
|
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) |
|
video_state["masks"][video_state["select_frame_number"]]= template_mask |
|
else: |
|
template_mask = video_state["masks"][video_state["select_frame_number"]] |
|
fps = video_state["fps"] |
|
|
|
audio_path = video_state["audio"] |
|
|
|
|
|
if len(np.unique(template_mask))==1: |
|
template_mask[0][0]=1 |
|
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size) |
|
|
|
foreground_output = generate_video_from_frames(foreground, output_path="./results/{}_fg.mp4".format(video_state["video_name"]), fps=fps, audio_path=audio_path) |
|
alpha_output = generate_video_from_frames(alpha, output_path="./results/{}_alpha.mp4".format(video_state["video_name"]), fps=fps, gray2rgb=True, audio_path=audio_path) |
|
|
|
return foreground_output, alpha_output |
|
|
|
|
|
def add_audio_to_video(video_path, audio_path, output_path): |
|
try: |
|
video_input = ffmpeg.input(video_path) |
|
audio_input = ffmpeg.input(audio_path) |
|
|
|
_ = ( |
|
ffmpeg |
|
.output(video_input, audio_input, output_path, vcodec="copy", acodec="aac") |
|
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True) |
|
) |
|
return output_path |
|
except ffmpeg.Error as e: |
|
print(f"FFmpeg error:\n{e.stderr.decode()}") |
|
return None |
|
|
|
|
|
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""): |
|
""" |
|
Generates a video from a list of frames. |
|
|
|
Args: |
|
frames (list of numpy arrays): The frames to include in the video. |
|
output_path (str): The path to save the generated video. |
|
fps (int, optional): The frame rate of the output video. Defaults to 30. |
|
""" |
|
frames = torch.from_numpy(np.asarray(frames)) |
|
_, h, w, _ = frames.shape |
|
if gray2rgb: |
|
frames = np.repeat(frames, 3, axis=3) |
|
|
|
if not os.path.exists(os.path.dirname(output_path)): |
|
os.makedirs(os.path.dirname(output_path)) |
|
video_temp_path = output_path.replace(".mp4", "_temp.mp4") |
|
|
|
|
|
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=10, |
|
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"]) |
|
|
|
|
|
if audio_path != "" and os.path.exists(audio_path): |
|
output_path = add_audio_to_video(video_temp_path, audio_path, output_path) |
|
os.remove(video_temp_path) |
|
return output_path |
|
else: |
|
return video_temp_path |
|
|
|
|
|
def restart(): |
|
return { |
|
"user_name": "", |
|
"video_name": "", |
|
"origin_images": None, |
|
"painted_images": None, |
|
"masks": None, |
|
"inpaint_masks": None, |
|
"logits": None, |
|
"select_frame_number": 0, |
|
"fps": 30 |
|
}, { |
|
"inference_times": 0, |
|
"negative_click_times" : 0, |
|
"positive_click_times": 0, |
|
"mask_save": args.mask_save, |
|
"multi_mask": { |
|
"mask_names": [], |
|
"masks": [] |
|
}, |
|
"track_end_number": None, |
|
}, [[],[]], None, None, \ |
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ |
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ |
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ |
|
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False) |
|
|
|
|
|
args = parse_augment() |
|
sam_checkpoint_url_dict = { |
|
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", |
|
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", |
|
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" |
|
} |
|
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models') |
|
|
|
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder) |
|
|
|
model = MaskGenerator(sam_checkpoint, args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from matanyone.model.matanyone import MatAnyone |
|
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone") |
|
|
|
matanyone_model = matanyone_model.to(args.device).eval() |
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) |
|
|
|
|
|
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/" |
|
test_sample_path = os.path.join('/home/user/app/hugging_face/', "test_sample/") |
|
load_file_from_url(os.path.join(media_url, 'test-sample0-720p.mp4'), test_sample_path) |
|
load_file_from_url(os.path.join(media_url, 'test-sample1-720p.mp4'), test_sample_path) |
|
load_file_from_url(os.path.join(media_url, 'test-sample2-720p.mp4'), test_sample_path) |
|
load_file_from_url(os.path.join(media_url, 'test-sample3-720p.mp4'), test_sample_path) |
|
load_file_from_url(os.path.join(media_url, 'test-sample0.jpg'), test_sample_path) |
|
load_file_from_url(os.path.join(media_url, 'test-sample1.jpg'), test_sample_path) |
|
|
|
|
|
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/") |
|
load_file_from_url(os.path.join(media_url, 'tutorial_single_target.mp4'), assets_path) |
|
load_file_from_url(os.path.join(media_url, 'tutorial_multi_targets.mp4'), assets_path) |
|
|
|
|
|
title = r"""<div class="multi-layer" align="center"><span>MatAnyone</span></div> |
|
""" |
|
description = r""" |
|
<b>Official Gradio demo</b> for <a href='https://github.com/pq-yang/MatAnyone' target='_blank'><b>MatAnyone: Stable Video Matting with Consistent Memory Propagation</b></a>.<br> |
|
🔥 MatAnyone is a practical human video matting framework supporting target assignment 🎯.<br> |
|
🎪 Try to drop your video/image, assign the target masks with a few clicks, and get the the matting results 🤡!<br> |
|
|
|
🚀 <b> If you encounter any issue (e.g., frozen video output) or wish to run on higher resolution inputs, please consider <u>duplicating this space</u> or |
|
<u>launching the <a href='https://github.com/pq-yang/MatAnyone?tab=readme-ov-file#-interactive-demo' target='_blank'>demo</a> locally</u> following the GitHub instructions.</b> |
|
""" |
|
article = r"""<h3> |
|
<b>If MatAnyone is helpful, please help to 🌟 the <a href='https://github.com/pq-yang/MatAnyone' target='_blank'>Github Repo</a>. Thanks!</b></h3> |
|
|
|
--- |
|
|
|
📑 **Citation** |
|
<br> |
|
If our work is useful for your research, please consider citing: |
|
```bibtex |
|
@InProceedings{yang2025matanyone, |
|
title = {{MatAnyone}: Stable Video Matting with Consistent Memory Propagation}, |
|
author = {Yang, Peiqing and Zhou, Shangchen and Zhao, Jixin and Tao, Qingyi and Loy, Chen Change}, |
|
booktitle = {arXiv preprint arXiv:2501.14677}, |
|
year = {2025} |
|
} |
|
``` |
|
📝 **License** |
|
<br> |
|
This project is licensed under <a rel="license" href="https://github.com/pq-yang/MatAnyone/blob/main/LICENSE">S-Lab License 1.0</a>. |
|
Redistribution and use for non-commercial purposes should follow this license. |
|
<br> |
|
📧 **Contact** |
|
<br> |
|
If you have any questions, please feel free to reach me out at <b>peiqingyang99@outlook.com</b>. |
|
<br> |
|
👏 **Acknowledgement** |
|
<br> |
|
This project is built upon [Cutie](https://github.com/hkchengrex/Cutie), with the interactive demo adapted from [ProPainter](https://github.com/sczhou/ProPainter), leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works! |
|
""" |
|
|
|
my_custom_css = """ |
|
.gradio-container {width: 85% !important; margin: 0 auto;} |
|
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important} |
|
button {border-radius: 8px !important;} |
|
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;} |
|
.green_button {background-color: #4CAF50 !important; color: #ffffff !important; border: none !important;} |
|
.new_button:hover {background-color: #4b4b4b !important;} |
|
.green_button:hover {background-color: #77bd79 !important;} |
|
|
|
.mask_button_group {gap: 10px !important;} |
|
.video .wrap.svelte-lcpz3o { |
|
display: flex !important; |
|
align-items: center !important; |
|
justify-content: center !important; |
|
height: auto !important; |
|
max-height: 300px !important; |
|
} |
|
.video .wrap.svelte-lcpz3o > :first-child { |
|
height: auto !important; |
|
width: 100% !important; |
|
object-fit: contain !important; |
|
} |
|
.video .container.svelte-sxyn79 { |
|
display: none !important; |
|
} |
|
.margin_center {width: 50% !important; margin: auto !important;} |
|
.jc_center {justify-content: center !important;} |
|
.video-title { |
|
margin-bottom: 5px !important; |
|
} |
|
.custom-bg { |
|
background-color: #f0f0f0; |
|
padding: 10px; |
|
border-radius: 10px; |
|
} |
|
|
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Sarpanch:wght@400;500;600;700;800;900&family=Sen:wght@400..800&family=Sixtyfour+Convergence&family=Stardos+Stencil:wght@400;700&display=swap'); |
|
body { |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
height: 100vh; |
|
margin: 0; |
|
background-color: #0d1117; |
|
font-family: Arial, sans-serif; |
|
font-size: 18px; |
|
} |
|
.title-container { |
|
text-align: center; |
|
padding: 0; |
|
margin: 0; |
|
height: 5vh; |
|
width: 80vw; |
|
font-family: "Sarpanch", sans-serif; |
|
font-weight: 60; |
|
} |
|
#custom-markdown { |
|
font-family: "Roboto", sans-serif; |
|
font-size: 18px; |
|
color: #333333; |
|
font-weight: bold; |
|
} |
|
small { |
|
font-size: 60%; |
|
} |
|
</style> |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Monochrome(), css=my_custom_css) as demo: |
|
gr.HTML(''' |
|
<div class="title-container"> |
|
<h1 class="title is-2 publication-title" |
|
style="font-size:50px; font-family: 'Sarpanch', serif; |
|
background: linear-gradient(to right, #d231d8, #2dc464); |
|
display: inline-block; -webkit-background-clip: text; |
|
-webkit-text-fill-color: transparent;"> |
|
MatAnyone |
|
</h1> |
|
</div> |
|
''') |
|
|
|
gr.Markdown(description) |
|
|
|
with gr.Group(elem_classes="gr-monochrome-group", visible=True): |
|
with gr.Row(): |
|
with gr.Accordion("📕 Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("### Case 1: Single Target") |
|
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_single_target.mp4", elem_classes="video") |
|
|
|
with gr.Column(): |
|
gr.Markdown("### Case 2: Multiple Targets") |
|
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_multi_targets.mp4", elem_classes="video") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Video"): |
|
click_state = gr.State([[],[]]) |
|
|
|
interactive_state = gr.State({ |
|
"inference_times": 0, |
|
"negative_click_times" : 0, |
|
"positive_click_times": 0, |
|
"mask_save": args.mask_save, |
|
"multi_mask": { |
|
"mask_names": [], |
|
"masks": [] |
|
}, |
|
"track_end_number": None, |
|
} |
|
) |
|
|
|
video_state = gr.State( |
|
{ |
|
"user_name": "", |
|
"video_name": "", |
|
"origin_images": None, |
|
"painted_images": None, |
|
"masks": None, |
|
"inpaint_masks": None, |
|
"logits": None, |
|
"select_frame_number": 0, |
|
"fps": 30, |
|
"audio": "", |
|
} |
|
) |
|
|
|
with gr.Group(elem_classes="gr-monochrome-group", visible=True): |
|
with gr.Row(): |
|
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): |
|
with gr.Row(): |
|
erode_kernel_size = gr.Slider(label='Erode Kernel Size', |
|
minimum=0, |
|
maximum=30, |
|
step=1, |
|
value=10, |
|
info="Erosion on the added mask", |
|
interactive=True) |
|
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', |
|
minimum=0, |
|
maximum=30, |
|
step=1, |
|
value=10, |
|
info="Dilation on the added mask", |
|
interactive=True) |
|
|
|
with gr.Row(): |
|
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False) |
|
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) |
|
with gr.Row(): |
|
point_prompt = gr.Radio( |
|
choices=["Positive", "Negative"], |
|
value="Positive", |
|
label="Point Prompt", |
|
info="Click to add positive or negative point for target mask", |
|
interactive=True, |
|
visible=False, |
|
min_width=100, |
|
scale=1) |
|
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False) |
|
|
|
gr.Markdown("---") |
|
|
|
with gr.Column(): |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
gr.Markdown("## Step1: Upload video") |
|
with gr.Column(scale=2): |
|
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
video_input = gr.Video(label="Input Video", elem_classes="video") |
|
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button") |
|
with gr.Column(scale=2): |
|
video_info = gr.Textbox(label="Video Info", visible=False) |
|
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image") |
|
with gr.Row(equal_height=True, elem_classes="mask_button_group"): |
|
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
matting_button = gr.Button(value="Video Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100) |
|
|
|
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">') |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
foreground_video_output = gr.Video(label="Foreground Output", visible=False, elem_classes="video") |
|
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button") |
|
with gr.Column(scale=2): |
|
alpha_video_output = gr.Video(label="Alpha Output", visible=False, elem_classes="video") |
|
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") |
|
|
|
|
|
|
|
extract_frames_button.click( |
|
fn=get_frames_from_video, |
|
inputs=[ |
|
video_input, video_state |
|
], |
|
outputs=[video_state, video_info, template_frame, |
|
image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, add_mask_button, matting_button, template_frame, |
|
foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title] |
|
) |
|
|
|
|
|
image_selection_slider.release(fn=select_video_template, |
|
inputs=[image_selection_slider, video_state, interactive_state], |
|
outputs=[template_frame, video_state, interactive_state], api_name="select_image") |
|
track_pause_number_slider.release(fn=get_end_number, |
|
inputs=[track_pause_number_slider, video_state, interactive_state], |
|
outputs=[template_frame, interactive_state], api_name="end_image") |
|
|
|
|
|
template_frame.select( |
|
fn=sam_refine, |
|
inputs=[video_state, point_prompt, click_state, interactive_state], |
|
outputs=[template_frame, video_state, interactive_state] |
|
) |
|
|
|
|
|
add_mask_button.click( |
|
fn=add_multi_mask, |
|
inputs=[video_state, interactive_state, mask_dropdown], |
|
outputs=[interactive_state, mask_dropdown, template_frame, click_state] |
|
) |
|
|
|
remove_mask_button.click( |
|
fn=remove_multi_mask, |
|
inputs=[interactive_state, mask_dropdown], |
|
outputs=[interactive_state, mask_dropdown] |
|
) |
|
|
|
|
|
matting_button.click( |
|
fn=video_matting, |
|
inputs=[video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size], |
|
outputs=[foreground_video_output, alpha_video_output] |
|
) |
|
|
|
|
|
mask_dropdown.change( |
|
fn=show_mask, |
|
inputs=[video_state, interactive_state, mask_dropdown], |
|
outputs=[template_frame] |
|
) |
|
|
|
|
|
video_input.change( |
|
fn=restart, |
|
inputs=[], |
|
outputs=[ |
|
video_state, |
|
interactive_state, |
|
click_state, |
|
foreground_video_output, alpha_video_output, |
|
template_frame, |
|
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, |
|
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title |
|
], |
|
queue=False, |
|
show_progress=False) |
|
|
|
video_input.clear( |
|
fn=restart, |
|
inputs=[], |
|
outputs=[ |
|
video_state, |
|
interactive_state, |
|
click_state, |
|
foreground_video_output, alpha_video_output, |
|
template_frame, |
|
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, |
|
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title |
|
], |
|
queue=False, |
|
show_progress=False) |
|
|
|
|
|
clear_button_click.click( |
|
fn = clear_click, |
|
inputs = [video_state, click_state,], |
|
outputs = [template_frame,click_state], |
|
) |
|
|
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Examples") |
|
gr.Examples( |
|
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0-720p.mp4", "test-sample1-720p.mp4", "test-sample2-720p.mp4", "test-sample3-720p.mp4"]], |
|
inputs=[video_input], |
|
) |
|
|
|
with gr.TabItem("Image"): |
|
click_state = gr.State([[],[]]) |
|
|
|
interactive_state = gr.State({ |
|
"inference_times": 0, |
|
"negative_click_times" : 0, |
|
"positive_click_times": 0, |
|
"mask_save": args.mask_save, |
|
"multi_mask": { |
|
"mask_names": [], |
|
"masks": [] |
|
}, |
|
"track_end_number": None, |
|
} |
|
) |
|
|
|
image_state = gr.State( |
|
{ |
|
"user_name": "", |
|
"image_name": "", |
|
"origin_images": None, |
|
"painted_images": None, |
|
"masks": None, |
|
"inpaint_masks": None, |
|
"logits": None, |
|
"select_frame_number": 0, |
|
"fps": 30 |
|
} |
|
) |
|
|
|
with gr.Group(elem_classes="gr-monochrome-group", visible=True): |
|
with gr.Row(): |
|
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): |
|
with gr.Row(): |
|
erode_kernel_size = gr.Slider(label='Erode Kernel Size', |
|
minimum=0, |
|
maximum=30, |
|
step=1, |
|
value=10, |
|
info="Erosion on the added mask", |
|
interactive=True) |
|
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', |
|
minimum=0, |
|
maximum=30, |
|
step=1, |
|
value=10, |
|
info="Dilation on the added mask", |
|
interactive=True) |
|
|
|
with gr.Row(): |
|
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations → More details & More time", visible=False) |
|
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) |
|
with gr.Row(): |
|
point_prompt = gr.Radio( |
|
choices=["Positive", "Negative"], |
|
value="Positive", |
|
label="Point Prompt", |
|
info="Click to add positive or negative point for target mask", |
|
interactive=True, |
|
visible=False, |
|
min_width=100, |
|
scale=1) |
|
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False) |
|
|
|
gr.Markdown("---") |
|
|
|
with gr.Column(): |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
gr.Markdown("## Step1: Upload image") |
|
with gr.Column(scale=2): |
|
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
image_input = gr.Image(label="Input Image", elem_classes="image") |
|
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button") |
|
with gr.Column(scale=2): |
|
image_info = gr.Textbox(label="Image Info", visible=False) |
|
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image") |
|
with gr.Row(equal_height=True, elem_classes="mask_button_group"): |
|
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) |
|
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100) |
|
|
|
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">') |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image") |
|
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button") |
|
with gr.Column(scale=2): |
|
alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image") |
|
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") |
|
|
|
|
|
extract_frames_button.click( |
|
fn=get_frames_from_image, |
|
inputs=[ |
|
image_input, image_state |
|
], |
|
outputs=[image_state, image_info, template_frame, |
|
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame, |
|
foreground_image_output, alpha_image_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title] |
|
) |
|
|
|
|
|
image_selection_slider.release(fn=select_image_template, |
|
inputs=[image_selection_slider, image_state, interactive_state], |
|
outputs=[template_frame, image_state, interactive_state], api_name="select_image") |
|
track_pause_number_slider.release(fn=get_end_number, |
|
inputs=[track_pause_number_slider, image_state, interactive_state], |
|
outputs=[template_frame, interactive_state], api_name="end_image") |
|
|
|
|
|
template_frame.select( |
|
fn=sam_refine, |
|
inputs=[image_state, point_prompt, click_state, interactive_state], |
|
outputs=[template_frame, image_state, interactive_state] |
|
) |
|
|
|
|
|
add_mask_button.click( |
|
fn=add_multi_mask, |
|
inputs=[image_state, interactive_state, mask_dropdown], |
|
outputs=[interactive_state, mask_dropdown, template_frame, click_state] |
|
) |
|
|
|
remove_mask_button.click( |
|
fn=remove_multi_mask, |
|
inputs=[interactive_state, mask_dropdown], |
|
outputs=[interactive_state, mask_dropdown] |
|
) |
|
|
|
|
|
matting_button.click( |
|
fn=image_matting, |
|
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider], |
|
outputs=[foreground_image_output, alpha_image_output] |
|
) |
|
|
|
|
|
mask_dropdown.change( |
|
fn=show_mask, |
|
inputs=[image_state, interactive_state, mask_dropdown], |
|
outputs=[template_frame] |
|
) |
|
|
|
|
|
image_input.change( |
|
fn=restart, |
|
inputs=[], |
|
outputs=[ |
|
image_state, |
|
interactive_state, |
|
click_state, |
|
foreground_image_output, alpha_image_output, |
|
template_frame, |
|
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, |
|
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title |
|
], |
|
queue=False, |
|
show_progress=False) |
|
|
|
image_input.clear( |
|
fn=restart, |
|
inputs=[], |
|
outputs=[ |
|
image_state, |
|
interactive_state, |
|
click_state, |
|
foreground_image_output, alpha_image_output, |
|
template_frame, |
|
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, |
|
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title |
|
], |
|
queue=False, |
|
show_progress=False) |
|
|
|
|
|
clear_button_click.click( |
|
fn = clear_click, |
|
inputs = [image_state, click_state,], |
|
outputs = [template_frame,click_state], |
|
) |
|
|
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Examples") |
|
gr.Examples( |
|
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.jpg", "test-sample1.jpg"]], |
|
inputs=[image_input], |
|
) |
|
|
|
gr.Markdown(article) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |