|
import time |
|
import torch |
|
import cv2 |
|
from PIL import Image, ImageDraw, ImageOps |
|
import numpy as np |
|
from typing import Union |
|
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator |
|
import matplotlib.pyplot as plt |
|
import PIL |
|
from .mask_painter import mask_painter |
|
|
|
|
|
class BaseSegmenter: |
|
def __init__(self, SAM_checkpoint, model_type, device='cuda:0'): |
|
""" |
|
device: model device |
|
SAM_checkpoint: path of SAM checkpoint |
|
model_type: vit_b, vit_l, vit_h |
|
""" |
|
print(f"Initializing BaseSegmenter to {device}") |
|
assert model_type in ['vit_b', 'vit_l', 'vit_h'], 'model_type must be vit_b, vit_l, or vit_h' |
|
|
|
self.device = device |
|
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 |
|
self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint) |
|
self.model.to(device=self.device) |
|
self.predictor = SamPredictor(self.model) |
|
self.embedded = False |
|
|
|
@torch.no_grad() |
|
def set_image(self, image: np.ndarray): |
|
|
|
|
|
self.orignal_image = image |
|
if self.embedded: |
|
print('repeat embedding, please reset_image.') |
|
return |
|
self.predictor.set_image(image) |
|
self.embedded = True |
|
return |
|
|
|
@torch.no_grad() |
|
def reset_image(self): |
|
|
|
self.predictor.reset_image() |
|
self.embedded = False |
|
|
|
def predict(self, prompts, mode, multimask=True): |
|
""" |
|
image: numpy array, h, w, 3 |
|
prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input' |
|
prompts['point_coords']: numpy array [N,2] |
|
prompts['point_labels']: numpy array [1,N] |
|
prompts['mask_input']: numpy array [1,256,256] |
|
mode: 'point' (points only), 'mask' (mask only), 'both' (consider both) |
|
mask_outputs: True (return 3 masks), False (return 1 mask only) |
|
whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :] |
|
""" |
|
assert self.embedded, 'prediction is called before set_image (feature embedding).' |
|
assert mode in ['point', 'mask', 'both'], 'mode must be point, mask, or both' |
|
|
|
if mode == 'point': |
|
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], |
|
point_labels=prompts['point_labels'], |
|
multimask_output=multimask) |
|
elif mode == 'mask': |
|
masks, scores, logits = self.predictor.predict(mask_input=prompts['mask_input'], |
|
multimask_output=multimask) |
|
elif mode == 'both': |
|
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], |
|
point_labels=prompts['point_labels'], |
|
mask_input=prompts['mask_input'], |
|
multimask_output=multimask) |
|
else: |
|
raise("Not implement now!") |
|
|
|
return masks, scores, logits |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
image = cv2.imread('/hhd3/gaoshang/truck.jpg') |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth' |
|
model_type = 'vit_h' |
|
device = "cuda:4" |
|
base_segmenter = BaseSegmenter(SAM_checkpoint=SAM_checkpoint, model_type=model_type, device=device) |
|
|
|
|
|
base_segmenter.set_image(image) |
|
|
|
|
|
|
|
mode = 'point' |
|
prompts = { |
|
'point_coords': np.array([[500, 375], [1125, 625]]), |
|
'point_labels': np.array([1, 1]), |
|
} |
|
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=False) |
|
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) |
|
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image) |
|
|
|
|
|
mode = 'both' |
|
mask_input = logits[np.argmax(scores), :, :] |
|
prompts = {'mask_input': mask_input [None, :, :]} |
|
prompts = { |
|
'point_coords': np.array([[500, 375], [1125, 625]]), |
|
'point_labels': np.array([1, 0]), |
|
'mask_input': mask_input[None, :, :] |
|
} |
|
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) |
|
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) |
|
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite('/hhd3/gaoshang/truck_both.jpg', painted_image) |
|
|
|
|
|
mode = 'mask' |
|
mask_input = logits[np.argmax(scores), :, :] |
|
|
|
prompts = {'mask_input': mask_input[None, :, :]} |
|
|
|
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) |
|
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) |
|
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite('/hhd3/gaoshang/truck_mask.jpg', painted_image) |
|
|