|
import time |
|
import torch |
|
import cv2 |
|
from PIL import Image, ImageDraw, ImageOps |
|
import numpy as np |
|
from typing import Union |
|
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator |
|
import matplotlib.pyplot as plt |
|
import PIL |
|
from .mask_painter import mask_painter as mask_painter2 |
|
from .base_segmenter import BaseSegmenter |
|
from .painter import mask_painter, point_painter |
|
import os |
|
import requests |
|
import sys |
|
|
|
|
|
mask_color = 3 |
|
mask_alpha = 0.7 |
|
contour_color = 1 |
|
contour_width = 5 |
|
point_color_ne = 8 |
|
point_color_ps = 50 |
|
point_alpha = 0.9 |
|
point_radius = 15 |
|
contour_color = 2 |
|
contour_width = 5 |
|
|
|
|
|
class SamControler(): |
|
def __init__(self, SAM_checkpoint, model_type, device): |
|
''' |
|
initialize sam controler |
|
''' |
|
self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3): |
|
''' |
|
it is used in first frame in video |
|
return: mask, logit, painted image(mask+point) |
|
''' |
|
|
|
origal_image = self.sam_controler.orignal_image |
|
neg_flag = labels[-1] |
|
if neg_flag==1: |
|
|
|
prompts = { |
|
'point_coords': points, |
|
'point_labels': labels, |
|
} |
|
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask) |
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :] |
|
prompts = { |
|
'point_coords': points, |
|
'point_labels': labels, |
|
'mask_input': logit[None, :, :] |
|
} |
|
masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask) |
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :] |
|
else: |
|
|
|
prompts = { |
|
'point_coords': points, |
|
'point_labels': labels, |
|
} |
|
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask) |
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :] |
|
|
|
|
|
assert len(points)==len(labels) |
|
|
|
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width) |
|
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width) |
|
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width) |
|
painted_image = Image.fromarray(painted_image) |
|
|
|
return mask, logit, painted_image |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|