|
""" |
|
For computing auxiliary outputs for auxiliary losses |
|
""" |
|
from typing import Dict |
|
from omegaconf import DictConfig |
|
import torch |
|
import torch.nn as nn |
|
|
|
from matanyone.model.group_modules import GConv2d |
|
from matanyone.utils.tensor_utils import aggregate |
|
|
|
|
|
class LinearPredictor(nn.Module): |
|
def __init__(self, x_dim: int, pix_dim: int): |
|
super().__init__() |
|
self.projection = GConv2d(x_dim, pix_dim + 1, kernel_size=1) |
|
|
|
def forward(self, pix_feat: torch.Tensor, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
num_objects = x.shape[1] |
|
x = self.projection(x) |
|
|
|
pix_feat = pix_feat.unsqueeze(1).expand(-1, num_objects, -1, -1, -1) |
|
logits = (pix_feat * x[:, :, :-1]).sum(dim=2) + x[:, :, -1] |
|
return logits |
|
|
|
|
|
class DirectPredictor(nn.Module): |
|
def __init__(self, x_dim: int): |
|
super().__init__() |
|
self.projection = GConv2d(x_dim, 1, kernel_size=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
logits = self.projection(x).squeeze(2) |
|
return logits |
|
|
|
|
|
class AuxComputer(nn.Module): |
|
def __init__(self, cfg: DictConfig): |
|
super().__init__() |
|
|
|
use_sensory_aux = cfg.model.aux_loss.sensory.enabled |
|
self.use_query_aux = cfg.model.aux_loss.query.enabled |
|
self.use_sensory_aux = use_sensory_aux |
|
|
|
sensory_dim = cfg.model.sensory_dim |
|
embed_dim = cfg.model.embed_dim |
|
|
|
if use_sensory_aux: |
|
self.sensory_aux = LinearPredictor(sensory_dim, embed_dim) |
|
|
|
def _aggregate_with_selector(self, logits: torch.Tensor, selector: torch.Tensor) -> torch.Tensor: |
|
prob = torch.sigmoid(logits) |
|
if selector is not None: |
|
prob = prob * selector |
|
logits = aggregate(prob, dim=1) |
|
return logits |
|
|
|
def forward(self, pix_feat: torch.Tensor, aux_input: Dict[str, torch.Tensor], |
|
selector: torch.Tensor, seg_pass=False) -> Dict[str, torch.Tensor]: |
|
sensory = aux_input['sensory'] |
|
q_logits = aux_input['q_logits'] |
|
|
|
aux_output = {} |
|
aux_output['attn_mask'] = aux_input['attn_mask'] |
|
|
|
if self.use_sensory_aux: |
|
|
|
logits = self.sensory_aux(pix_feat, sensory) |
|
aux_output['sensory_logits'] = self._aggregate_with_selector(logits, selector) |
|
if self.use_query_aux: |
|
|
|
aux_output['q_logits'] = self._aggregate_with_selector( |
|
torch.stack(q_logits, dim=2), |
|
selector.unsqueeze(2) if selector is not None else None) |
|
|
|
return aux_output |
|
|
|
def compute_mask(self, aux_input: Dict[str, torch.Tensor], |
|
selector: torch.Tensor) -> Dict[str, torch.Tensor]: |
|
|
|
q_logits = aux_input['q_logits'] |
|
|
|
aux_output = {} |
|
|
|
|
|
aux_output['q_logits'] = self._aggregate_with_selector( |
|
torch.stack(q_logits, dim=2), |
|
selector.unsqueeze(2) if selector is not None else None) |
|
|
|
return aux_output |