|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class CAResBlock(nn.Module): |
|
def __init__(self, in_dim: int, out_dim: int, residual: bool = True): |
|
super().__init__() |
|
self.residual = residual |
|
self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1) |
|
|
|
t = int((abs(math.log2(out_dim)) + 1) // 2) |
|
k = t if t % 2 else t + 1 |
|
self.pool = nn.AdaptiveAvgPool2d(1) |
|
self.conv = nn.Conv1d(1, 1, kernel_size=k, padding=(k - 1) // 2, bias=False) |
|
|
|
if self.residual: |
|
if in_dim == out_dim: |
|
self.downsample = nn.Identity() |
|
else: |
|
self.downsample = nn.Conv2d(in_dim, out_dim, kernel_size=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
r = x |
|
x = self.conv1(F.relu(x)) |
|
x = self.conv2(F.relu(x)) |
|
|
|
b, c = x.shape[:2] |
|
w = self.pool(x).view(b, 1, c) |
|
w = self.conv(w).transpose(-1, -2).unsqueeze(-1).sigmoid() |
|
|
|
if self.residual: |
|
x = x * w + self.downsample(r) |
|
else: |
|
x = x * w |
|
|
|
return x |
|
|