|
from typing import List, Iterable |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from matanyone.model.group_modules import MainToGroupDistributor, GroupResBlock, upsample_groups, GConv2d, downsample_groups |
|
|
|
|
|
class UpsampleBlock(nn.Module): |
|
def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2): |
|
super().__init__() |
|
self.out_conv = ResBlock(in_dim, out_dim) |
|
self.scale_factor = scale_factor |
|
|
|
def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor: |
|
g = F.interpolate(in_g, |
|
scale_factor=self.scale_factor, |
|
mode='bilinear') |
|
g = self.out_conv(g) |
|
g = g + skip_f |
|
return g |
|
|
|
class MaskUpsampleBlock(nn.Module): |
|
def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2): |
|
super().__init__() |
|
self.distributor = MainToGroupDistributor(method='add') |
|
self.out_conv = GroupResBlock(in_dim, out_dim) |
|
self.scale_factor = scale_factor |
|
|
|
def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor: |
|
g = upsample_groups(in_g, ratio=self.scale_factor) |
|
g = self.distributor(skip_f, g) |
|
g = self.out_conv(g) |
|
return g |
|
|
|
|
|
class DecoderFeatureProcessor(nn.Module): |
|
def __init__(self, decoder_dims: List[int], out_dims: List[int]): |
|
super().__init__() |
|
self.transforms = nn.ModuleList([ |
|
nn.Conv2d(d_dim, p_dim, kernel_size=1) for d_dim, p_dim in zip(decoder_dims, out_dims) |
|
]) |
|
|
|
def forward(self, multi_scale_features: Iterable[torch.Tensor]) -> List[torch.Tensor]: |
|
outputs = [func(x) for x, func in zip(multi_scale_features, self.transforms)] |
|
return outputs |
|
|
|
|
|
|
|
def _recurrent_update(h: torch.Tensor, values: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
dim = values.shape[2] // 3 |
|
forget_gate = torch.sigmoid(values[:, :, :dim]) |
|
update_gate = torch.sigmoid(values[:, :, dim:dim * 2]) |
|
new_value = torch.tanh(values[:, :, dim * 2:]) |
|
new_h = forget_gate * h * (1 - update_gate) + update_gate * new_value |
|
return new_h |
|
|
|
|
|
class SensoryUpdater_fullscale(nn.Module): |
|
|
|
def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int): |
|
super().__init__() |
|
self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1) |
|
self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1) |
|
self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1) |
|
self.g2_conv = GConv2d(g_dims[3], mid_dim, kernel_size=1) |
|
self.g1_conv = GConv2d(g_dims[4], mid_dim, kernel_size=1) |
|
|
|
self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) |
|
|
|
nn.init.xavier_normal_(self.transform.weight) |
|
|
|
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: |
|
g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \ |
|
self.g4_conv(downsample_groups(g[2], ratio=1/4)) + \ |
|
self.g2_conv(downsample_groups(g[3], ratio=1/8)) + \ |
|
self.g1_conv(downsample_groups(g[4], ratio=1/16)) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
g = g.float() |
|
h = h.float() |
|
values = self.transform(torch.cat([g, h], dim=2)) |
|
new_h = _recurrent_update(h, values) |
|
|
|
return new_h |
|
|
|
class SensoryUpdater(nn.Module): |
|
|
|
def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int): |
|
super().__init__() |
|
self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1) |
|
self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1) |
|
self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1) |
|
|
|
self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) |
|
|
|
nn.init.xavier_normal_(self.transform.weight) |
|
|
|
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: |
|
g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \ |
|
self.g4_conv(downsample_groups(g[2], ratio=1/4)) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
g = g.float() |
|
h = h.float() |
|
values = self.transform(torch.cat([g, h], dim=2)) |
|
new_h = _recurrent_update(h, values) |
|
|
|
return new_h |
|
|
|
|
|
class SensoryDeepUpdater(nn.Module): |
|
def __init__(self, f_dim: int, sensory_dim: int): |
|
super().__init__() |
|
self.transform = GConv2d(f_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1) |
|
|
|
nn.init.xavier_normal_(self.transform.weight) |
|
|
|
def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor: |
|
with torch.cuda.amp.autocast(enabled=False): |
|
g = g.float() |
|
h = h.float() |
|
values = self.transform(torch.cat([g, h], dim=2)) |
|
new_h = _recurrent_update(h, values) |
|
|
|
return new_h |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, in_dim: int, out_dim: int): |
|
super().__init__() |
|
|
|
if in_dim == out_dim: |
|
self.downsample = nn.Identity() |
|
else: |
|
self.downsample = nn.Conv2d(in_dim, out_dim, kernel_size=1) |
|
|
|
self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1) |
|
|
|
def forward(self, g: torch.Tensor) -> torch.Tensor: |
|
out_g = self.conv1(F.relu(g)) |
|
out_g = self.conv2(F.relu(out_g)) |
|
|
|
g = self.downsample(g) |
|
|
|
return out_g + g |