Spaces:
Sleeping
Sleeping
Create batch-app.py
Browse files- batch-app.py +174 -0
batch-app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from PIL import Image, ImageChops, ImageFilter
|
4 |
+
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# 初始化模型
|
9 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
10 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
11 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
+
|
14 |
+
# 图像处理函数
|
15 |
+
def compute_difference_images(img_a, img_b):
|
16 |
+
def extract_sketch(image):
|
17 |
+
grayscale = image.convert("L")
|
18 |
+
inverted = ImageChops.invert(grayscale)
|
19 |
+
sketch = ImageChops.screen(grayscale, inverted)
|
20 |
+
return sketch
|
21 |
+
|
22 |
+
def compute_normal_map(image):
|
23 |
+
edges = image.filter(ImageFilter.FIND_EDGES)
|
24 |
+
return edges
|
25 |
+
|
26 |
+
diff_overlay = ImageChops.difference(img_a, img_b)
|
27 |
+
return {
|
28 |
+
"original_a": img_a,
|
29 |
+
"original_b": img_b,
|
30 |
+
"sketch_a": extract_sketch(img_a),
|
31 |
+
"sketch_b": extract_sketch(img_b),
|
32 |
+
"normal_a": compute_normal_map(img_a),
|
33 |
+
"normal_b": compute_normal_map(img_b),
|
34 |
+
"diff_overlay": diff_overlay
|
35 |
+
}
|
36 |
+
|
37 |
+
# 保存图像到文件
|
38 |
+
def save_images(images):
|
39 |
+
paths = []
|
40 |
+
for key, img in images.items():
|
41 |
+
path = f"{key}.png"
|
42 |
+
img.save(path)
|
43 |
+
paths.append((path, key.replace("_", " ").capitalize()))
|
44 |
+
return paths
|
45 |
+
|
46 |
+
# BLIP生成更详尽描述
|
47 |
+
def generate_detailed_caption(image):
|
48 |
+
inputs = blip_processor(image, return_tensors="pt")
|
49 |
+
caption = blip_model.generate(**inputs, max_length=128, num_beams=5, no_repeat_ngram_size=2)
|
50 |
+
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
51 |
+
|
52 |
+
# 特征差异可视化
|
53 |
+
def plot_feature_differences(latent_diff):
|
54 |
+
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
55 |
+
indices = range(len(diff_magnitude))
|
56 |
+
|
57 |
+
plt.figure(figsize=(8, 4))
|
58 |
+
plt.bar(indices, diff_magnitude, alpha=0.7)
|
59 |
+
plt.xlabel("Feature Index")
|
60 |
+
plt.ylabel("Magnitude of Difference")
|
61 |
+
plt.title("Feature Differences (Bar Chart)")
|
62 |
+
bar_chart_path = "bar_chart.png"
|
63 |
+
plt.savefig(bar_chart_path)
|
64 |
+
plt.close()
|
65 |
+
|
66 |
+
plt.figure(figsize=(6, 6))
|
67 |
+
plt.pie(diff_magnitude[:10], labels=range(10), autopct="%1.1f%%", startangle=140)
|
68 |
+
plt.title("Top 10 Feature Differences (Pie Chart)")
|
69 |
+
pie_chart_path = "pie_chart.png"
|
70 |
+
plt.savefig(pie_chart_path)
|
71 |
+
plt.close()
|
72 |
+
|
73 |
+
return bar_chart_path, pie_chart_path
|
74 |
+
|
75 |
+
# 生成详细分析
|
76 |
+
def generate_text_analysis(api_key, api_type, caption_a, caption_b):
|
77 |
+
import openai
|
78 |
+
|
79 |
+
if api_type == "DeepSeek":
|
80 |
+
from openai import OpenAI
|
81 |
+
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
82 |
+
else:
|
83 |
+
client = openai
|
84 |
+
|
85 |
+
response = client.ChatCompletion.create(
|
86 |
+
model="gpt-4" if api_type == "GPT" else "deepseek-chat",
|
87 |
+
messages=[
|
88 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
89 |
+
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
90 |
+
]
|
91 |
+
)
|
92 |
+
return response['choices'][0]['message']['content'].strip()
|
93 |
+
|
94 |
+
# 分析函数
|
95 |
+
def analyze_images(img_a, img_b, api_key, api_type):
|
96 |
+
images_diff = compute_difference_images(img_a, img_b)
|
97 |
+
saved_images = save_images(images_diff)
|
98 |
+
|
99 |
+
caption_a = generate_detailed_caption(img_a)
|
100 |
+
caption_b = generate_detailed_caption(img_b)
|
101 |
+
|
102 |
+
inputs = clip_processor(images=img_a, return_tensors="pt")
|
103 |
+
features_a = clip_model.get_image_features(**inputs).detach().numpy()
|
104 |
+
|
105 |
+
inputs = clip_processor(images=img_b, return_tensors="pt")
|
106 |
+
features_b = clip_model.get_image_features(**inputs).detach().numpy()
|
107 |
+
|
108 |
+
latent_diff = np.abs(features_a - features_b).tolist()
|
109 |
+
|
110 |
+
bar_chart, pie_chart = plot_feature_differences(latent_diff)
|
111 |
+
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
112 |
+
|
113 |
+
return {
|
114 |
+
"saved_images": saved_images,
|
115 |
+
"caption_a": caption_a,
|
116 |
+
"caption_b": caption_b,
|
117 |
+
"text_analysis": text_analysis,
|
118 |
+
"bar_chart": bar_chart,
|
119 |
+
"pie_chart": pie_chart
|
120 |
+
}
|
121 |
+
|
122 |
+
# 批量分析
|
123 |
+
def batch_analyze(folder_a, folder_b, api_key, api_type):
|
124 |
+
def load_images(folder_path):
|
125 |
+
files = sorted([os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
|
126 |
+
return [Image.open(f).convert("RGB") for f in files]
|
127 |
+
|
128 |
+
images_a = load_images(folder_a)
|
129 |
+
images_b = load_images(folder_b)
|
130 |
+
num_pairs = min(len(images_a), len(images_b))
|
131 |
+
|
132 |
+
results = []
|
133 |
+
for i in range(num_pairs):
|
134 |
+
result = analyze_images(images_a[i], images_b[i], api_key, api_type)
|
135 |
+
results.append({
|
136 |
+
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
137 |
+
**result
|
138 |
+
})
|
139 |
+
return results
|
140 |
+
|
141 |
+
# Gradio界面
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.Markdown("# 批量图像对比分析工具")
|
144 |
+
|
145 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 API Key", type="password")
|
146 |
+
api_type_input = gr.Dropdown(label="API 类型", choices=["GPT", "DeepSeek"], value="GPT")
|
147 |
+
folder_a_input = gr.Textbox(label="文件夹A路径", placeholder="输入包含图片A的文件夹路径")
|
148 |
+
folder_b_input = gr.Textbox(label="文件夹B路径", placeholder="输入包含图片B的文件夹路径")
|
149 |
+
analyze_button = gr.Button("开始批量分析")
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
result_gallery = gr.Gallery(label="差异图像").style(grid=3)
|
153 |
+
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
154 |
+
|
155 |
+
def process_batch_analysis(folder_a, folder_b, api_key, api_type):
|
156 |
+
results = batch_analyze(folder_a, folder_b, api_key, api_type)
|
157 |
+
all_images = []
|
158 |
+
all_texts = []
|
159 |
+
|
160 |
+
for result in results:
|
161 |
+
all_images.extend(result["saved_images"])
|
162 |
+
all_images.append((result["bar_chart"], "Bar Chart"))
|
163 |
+
all_images.append((result["pie_chart"], "Pie Chart"))
|
164 |
+
all_texts.append(f"{result['pair'][0]} vs {result['pair'][1]}:\n{result['text_analysis']}")
|
165 |
+
|
166 |
+
return all_images, "\n\n".join(all_texts)
|
167 |
+
|
168 |
+
analyze_button.click(
|
169 |
+
fn=process_batch_analysis,
|
170 |
+
inputs=[folder_a_input, folder_b_input, api_key_input, api_type_input],
|
171 |
+
outputs=[result_gallery, result_text_analysis]
|
172 |
+
)
|
173 |
+
|
174 |
+
demo.launch()
|