Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,9 @@ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
13 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
15 |
|
|
|
|
|
|
|
16 |
# 图像处理函数
|
17 |
def compute_difference_images(img_a, img_b):
|
18 |
def extract_sketch(image):
|
@@ -37,10 +40,10 @@ def compute_difference_images(img_a, img_b):
|
|
37 |
}
|
38 |
|
39 |
# 保存图像到文件
|
40 |
-
def save_images(images):
|
41 |
paths = []
|
42 |
for key, img in images.items():
|
43 |
-
path = f"{key}.png"
|
44 |
img.save(path)
|
45 |
paths.append((path, key.replace("_", " ").capitalize()))
|
46 |
return paths
|
@@ -52,23 +55,29 @@ def generate_detailed_caption(image):
|
|
52 |
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
53 |
|
54 |
# 特征差异可视化
|
55 |
-
def plot_feature_differences(latent_diff):
|
56 |
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
57 |
indices = range(len(diff_magnitude))
|
|
|
58 |
|
59 |
plt.figure(figsize=(8, 4))
|
60 |
plt.bar(indices, diff_magnitude, alpha=0.7)
|
61 |
plt.xlabel("Feature Index (Latent Dimension)")
|
62 |
plt.ylabel("Magnitude of Difference")
|
63 |
plt.title("Feature Differences (Bar Chart)")
|
64 |
-
bar_chart_path = "
|
65 |
plt.savefig(bar_chart_path)
|
66 |
plt.close()
|
67 |
|
68 |
plt.figure(figsize=(6, 6))
|
69 |
-
plt.pie(
|
|
|
|
|
|
|
|
|
|
|
70 |
plt.title("Top 10 Feature Differences (Pie Chart)")
|
71 |
-
pie_chart_path = "
|
72 |
plt.savefig(pie_chart_path)
|
73 |
plt.close()
|
74 |
|
@@ -88,13 +97,12 @@ def generate_text_analysis(api_key, api_type, caption_a, caption_b):
|
|
88 |
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
89 |
]
|
90 |
)
|
91 |
-
# 修复: 正确访问返回值
|
92 |
return response.choices[0].message.content.strip()
|
93 |
|
94 |
# 分析函数
|
95 |
-
def analyze_images(img_a, img_b, api_key, api_type):
|
96 |
images_diff = compute_difference_images(img_a, img_b)
|
97 |
-
saved_images = save_images(images_diff)
|
98 |
|
99 |
caption_a = generate_detailed_caption(img_a)
|
100 |
caption_b = generate_detailed_caption(img_b)
|
@@ -107,7 +115,7 @@ def analyze_images(img_a, img_b, api_key, api_type):
|
|
107 |
|
108 |
latent_diff = np.abs(features_a - features_b).tolist()
|
109 |
|
110 |
-
bar_chart, pie_chart = plot_feature_differences(latent_diff)
|
111 |
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
112 |
|
113 |
return {
|
@@ -125,7 +133,8 @@ def batch_analyze(images_a, images_b, api_key, api_type):
|
|
125 |
|
126 |
results = []
|
127 |
for i in range(num_pairs):
|
128 |
-
|
|
|
129 |
results.append({
|
130 |
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
131 |
**result
|
|
|
13 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
15 |
|
16 |
+
# 定义CLIP特征的名称(假设的特征名称,您可以根据需要调整)
|
17 |
+
CLIP_FEATURE_NAMES = [f"Dimension {i}" for i in range(512)]
|
18 |
+
|
19 |
# 图像处理函数
|
20 |
def compute_difference_images(img_a, img_b):
|
21 |
def extract_sketch(image):
|
|
|
40 |
}
|
41 |
|
42 |
# 保存图像到文件
|
43 |
+
def save_images(images, prefix):
|
44 |
paths = []
|
45 |
for key, img in images.items():
|
46 |
+
path = f"{prefix}_{key}.png"
|
47 |
img.save(path)
|
48 |
paths.append((path, key.replace("_", " ").capitalize()))
|
49 |
return paths
|
|
|
55 |
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
56 |
|
57 |
# 特征差异可视化
|
58 |
+
def plot_feature_differences(latent_diff, prefix):
|
59 |
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
60 |
indices = range(len(diff_magnitude))
|
61 |
+
top_indices = np.argsort(diff_magnitude)[-10:][::-1] # Top 10 differences
|
62 |
|
63 |
plt.figure(figsize=(8, 4))
|
64 |
plt.bar(indices, diff_magnitude, alpha=0.7)
|
65 |
plt.xlabel("Feature Index (Latent Dimension)")
|
66 |
plt.ylabel("Magnitude of Difference")
|
67 |
plt.title("Feature Differences (Bar Chart)")
|
68 |
+
bar_chart_path = f"{prefix}_bar_chart.png"
|
69 |
plt.savefig(bar_chart_path)
|
70 |
plt.close()
|
71 |
|
72 |
plt.figure(figsize=(6, 6))
|
73 |
+
plt.pie(
|
74 |
+
[diff_magnitude[i] for i in top_indices],
|
75 |
+
labels=[CLIP_FEATURE_NAMES[i] for i in top_indices],
|
76 |
+
autopct="%1.1f%%",
|
77 |
+
startangle=140
|
78 |
+
)
|
79 |
plt.title("Top 10 Feature Differences (Pie Chart)")
|
80 |
+
pie_chart_path = f"{prefix}_pie_chart.png"
|
81 |
plt.savefig(pie_chart_path)
|
82 |
plt.close()
|
83 |
|
|
|
97 |
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
98 |
]
|
99 |
)
|
|
|
100 |
return response.choices[0].message.content.strip()
|
101 |
|
102 |
# 分析函数
|
103 |
+
def analyze_images(img_a, img_b, api_key, api_type, prefix):
|
104 |
images_diff = compute_difference_images(img_a, img_b)
|
105 |
+
saved_images = save_images(images_diff, prefix)
|
106 |
|
107 |
caption_a = generate_detailed_caption(img_a)
|
108 |
caption_b = generate_detailed_caption(img_b)
|
|
|
115 |
|
116 |
latent_diff = np.abs(features_a - features_b).tolist()
|
117 |
|
118 |
+
bar_chart, pie_chart = plot_feature_differences(latent_diff, prefix)
|
119 |
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
120 |
|
121 |
return {
|
|
|
133 |
|
134 |
results = []
|
135 |
for i in range(num_pairs):
|
136 |
+
prefix = f"comparison_{i+1}"
|
137 |
+
result = analyze_images(images_a[i], images_b[i], api_key, api_type, prefix)
|
138 |
results.append({
|
139 |
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
140 |
**result
|